AP STATE COUNCIL OF HIGHER EDUCATION

CBCS PATTERN FOR MICROBIOLOGY

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020

YEAR	SEMESTER	PAPER	TITLE	MARKS	CREDICTS
I	Ι	MBT - I	INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY	100	
		MBP – I	INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY	50	
	II	MBT – II	MICROBIAL PHYSIOLOGY AND BIOCHEMISTRY	100	
		MBP – II	MICROBIAL PHYSIOLOGY AND BIOCHEMISTRY	50	
II	III	MBT –III	MEDICAL MICROBIOLOGY AND IMMUNOLOGY	100	
		MBP – III	MEDICAL MICROBIOLOGY AND IMMUNOLOGY	50	
		MBT - IV	INDUSTRIAL MICROBIOLOGY	100	
		MBP – IV	INDUSTRIAL MICROBIOLOGY	50	
	IV	MBT - V	MOLECULAR BIOLOGY AND MICROBIAL GENETICS	100	
		MBP - V	MOLECULAR BIOLOGY AND MICROBIAL GENETICS	50	
III	V				
		MBT – A1	FOOD, AGRICULTURE AND ENVIRONMENTAL MICROBIOLOGY	100	
		MBP – A1	FOOD, AGRICULTURE AND ENVIRONMENTAL MICROBIOLOGY	50	
		MBT – A2	MANAGEMENT OF HUMAN MICROBIAL DISEASES AND DIAGNOSIS	100	

MBP – A2	MANAGEMENT OF HUMAN	50			
	MICROBIAL DISEASES AND				
	DIAGNOSIS				
B – PAIR					
MBT – B1	MICROBIAL BIOTECHNOLOGY AND r	100			
	– DNA TECHNOLOGY				
MBP – B1	MICROBIAL BIOTECHNOLOGY AND r	50			
	– DNA TECHNOLOGY				
MBT – B2	BIOSTATISTICS AND	100			
	BIOINFORMATICS				
MBP – B2	BIOSTATISTICS AND	50			
	BIOINFORMATICS				
C – PAIR					
MBT – C1	MICROBIAL QUALITY CONTROL	100			
	INSTRUMENTATION AND				
	TECHNIQUES				
MBP – C1	MICROBIAL QUALITY CONTROL	50			
	INSTRUMENTATION AND				
	TECHNIQUES				
MBT – C2	DRUG DESIGN, DISCOVERY AND	100			
	ITELECTUAL PROPERTY RIGHTS				
	(IPR)				
MBP – C2	DRUG DESIGN, DISCOVERY AND	50			
	ITELECTUAL PROPERTY RIGHTS				
	(IPR)				

AP STATE COUNCIL OF HIGHER EDUCATION CBCS PATTERN FOR MICROBIOLOGY

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 MBT- I: INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY

TOTAL HOURS: 48

CREDITS: 4

UNIT-I:

No. of hours: 10

History and mile stones in microbiology. Contributions of Anton von Leeuwenhoek, Edward Jenner, Louis Pasteur, Robert Koch, Ivanowsky. Importance and applications of microbiology. Classification of microorganisms. Whittaker's five kingdom concept, Bergey's Manual of Systematic Bacteriology. General characteristics and outline classification of Bacteria, Archaea, Mycoplasmas, Cyanobacteria, Fungi, Algae, Protozoa and viruses.

UNIT-II:

No. of hours: 10

Methods of sterilization: Physical methods – Dry heat, moist heat, radiation methods, filtration methods, Chemical methods and their application.

Microbial cultures: Concept of pure culture, Methods of pure culture isolation, Enrichment culturing techniques, single cell isolation, and pure culture development.

Preservation of microbial cultures: subculturing, overlaying cultures with mineral oils, lyophilization, and cultures, storage at low temperature.

UNIT-III:

No. of hours: 8

Staining Techniques - Simple and Differential staining techniques.

Principles of microscopy - Bright field and Electron microscopy (SEM and TEM).

Nutritional types of bacteria. Microbiological media-Natural and synthetic basal, defined, complex, enrichment, selective, differential, maintenance and transport media.

No. of hours: 10

Microbial growth: Principles of growth, Kinetics of growth, Methods of measuring growth: Direct methods: viable plate counts, membrane filtration. Indirect methods: Metabolic activity – measurements of DNA, Protein, Microscopic counts, electronic counters, most probable number; Batch and continuous growth, Synchronous culture, Diauxic growth, Types of cultures-stock, batch, continuous and synchronous cultures. Cultivation of aerobes and anaerobes. Reproduction in bacteria and spore formation.

UNIT-V:

No. of hours: 10

Ultra structure of Prokaryotic cell- Variant components and invariant components. Cell wall of bacteria and fungi, Gram positive cell wall, Gram negative cell wall, Cell wall of fungi and yeasts. Morphology,Ultrastructure and chemical composition of bacteria, Actinomycetes,

Spirochetes, Rickettsiae, Mycoplasma, Chlamydiae. Economic importance of algae and fungi. SCP.

MBP- I: INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITYTOTAL HOURS: 30CREDITS: 2

- 1. Microbiology Good Laboratory Practices and Biosafety.
- 2. Preparation of culture media for cultivation of bacteria
- 3. Preparation of culture media for cultivation of fungi
- 4. Sterilization of medium using Autoclave
- 5. Sterilization of glassware using Hot Air Oven
- 6. Light compound microscope and its handling
- Microscopic observation of bacteria (Gram +ve bacilli and cocci, Gram ve bacilli), Cyanobacteria, Algae and Fungi.
- 8. Simple staining
- 9. Gram's staining
- 10. Hanging-drop method.
- 11. Isolation of pure cultures of bacteria by streaking method.
- 12. Preservation of bacterial cultures by various techniques.

SUGGESTED READING:

- Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. (1993). Microbiology. 5th Edition, Tata Mc Graw Hill Publishing Co., Ltd., New Delhi.
- Dube, R.C. and Maheswari, D.K. (2000) General Microbiology. S Chand, New Delhi. Edition), Himalaya Publishing House, Mumbai.
- Power, C.B. and Daginawala, H.F. (1986). General Microbiology Vol I & II
- Prescott, M.J., Harley, J.P. and Klein, D.A. (2010). Microbiology. 5th Edition, WCB Mc GrawHill, New York.
- Reddy, S.M. and Reddy, S.R. (1998). Microbiology □ Practical Manual, 3 rd Edition, Sri Padmavathi Publications, Hyderabad.
- Singh, R.P. (2007). General Microbiology. Kalyani Publishers, New Delhi.
- Stanier, R.Y., Adelberg, E.A. and Ingram, J.L. (1991). General Microbiology, 5th Ed., Prentice Hall of India Pvt. Ltd., New Delhi.
- Microbiology Edited by Prescott
- Jaya Babu (2006). Practical Manual on Microbial Metabolisms and General Microbiology. Kalyani Publishers, New Delhi.
- Gopal Reddy et al., Laboratory Experiments in Microbiology

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS – 2020 MBT – II: MICROBIAL PHYSIOLOGY AND BIOCHEMISTRY

TOTAL HOURS: 48

No. of hours: 8

CREDITS: 4

Carbohydrates – Classification, chemistry, properties, and function– mono, di, oligo and polysaccharides. Lipids – classification, chemistry, properties and function – free fatty acids, triglycerides, phospholipids, glycolipids &waxes

UNIT-II:

UNIT-I:

No. of hours: 10

Aminoacids –classification, structure and function. Essential amino Acids & amphoteric nature of amino acids and reactions and functions of carboxyl and amino groups and side chains. Proteins– isolation and characterization of proteins. Structural levels of proteins– primary, secondary, tertiary and quaternary, denaturation of proteins. Hydrolysis of proteins. Outlines of Protein sequencing using various methods.

<u>UNIT – III:</u>

No. of hours: 10

Nucleicacids-structure, function and their properties. Structural polymorphism of DNA, RNA. Chemical structure and base composition of nucleic acids, Chargaff's rules, Watson Crick Model (B-DNA), deviations from Watson-Crick model, other forms of DNA (A- and Z-DNA), forces stabilizing nucleic acid structures, (hydrogen bonds and hydrophobic associations, base stacking). Structural characteristics of RNA. Types of RNA.

<u>UNIT – IV:</u>

No. of hours: 10

Aerobic respiration - Glycolysis, HMP path way, ED path way, TCA cycle, Electron transport, oxidative and substrate level phosphorylation. Kreb'scycle, glyoxylatecycle, hexose monophosphate (HMP) shunt, gluconeogenesis.

Anaerobic respiration Fermentation, Biochemical mechanisms of lacticacid, ethanol, butanol and citricacid_fermentations. Nitrate and sulphate respiration. Outlines of oxygenic and anoxy genic photosynthesis in bacteria.

<u>UNIT- V</u>

No. of hours: 10

Properties and classification of Enzymes. Biocatalysis- induced fit and lock and key models.

Coenzymes and Cofactors. Factors affecting catalytic activity.

Inhibition of enzyme activity- competitive, noncompetitive, uncompetitive and allosteric.

Enzyme kinetics: Michaelis-Menten equation, effect of substrate concentration, effect of enzyme concentration, effect of p H and temperature, temperature.

MBP – II: MICROBIAL PHYSIOLOGY AND BIOCHEMISTRY

TOTAL HOURS: 48

CREDITS: 2

- 1. Qualitative Analysis of Carbohydrates.
- 2. Qualitative Analysis of Aminoacids.
- 3. Colorimetric estimation DNA by diphenylamine method.
- 4. Estimation of RNA by Orcinol method.
- 5. Colorimetric estimation of proteins by Biuret / Lowry method.
- 6. Estimation of reducing sugar-Anthrone method.
- 7. Estimation of sugar by titration method–Benedict's method.
- 8. Determination of pKa and pI values of amino acids.
- 9. Assay of amylase activity
- 10. Effect of temperature / pH on enzyme activity
- 11. demonstration of immobilization of enzyme activity.

SUGGESTED READING:

- Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company Caldwell, D.R. (1995). Microbial Physiology and Metabolism, W.C. Brown Publications, Iowa, USA.
- Lehninger, A.L., Nelson, D.L. and Cox, M.M. (1993). Principles of Biochemistry, 2 nd Edition, CBS Publishers and Distributors, New Delhi.
- Sashidhara Rao, B. and Deshpande, V. (2007). Experimental Biochemistry: A student

Companion. I.K. International Pvt. Ltd.

- Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman
- Voet, D. and Voet J.G (2004) Biochemistry 3rd edition, John Wiley and Sons
 White, D. (1995). The Physiology and Biochemistry of Prokaryotes, Oxford University
 Press, New York.

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS – 2020 MBT – III: MEDICAL MICROBIOLOGY AND IMMUNOLOGY

TOTAL HOURS: 48

CREDITS: 4

<u>UNIT-I:</u>

No. of hours: 8

Normal flora of human body. Host pathogen interactions: infection, invasion, pathogen, pathogenicity, virulence and opportunistic infection. General account on nosocomial infection. General principles of diagnostic microbiology- collection, transport and processing of clinical samples. General methods of laboratory diagnosis - cultural, biochemical, serological and molecular methods.

<u>UNIT-II:</u>

No. of hours: 10

General account on microbial diseases - causal organism, pathogenesis, epidemiology, diagnosis, prevention and control.

Bacterial diseases - Tuberculosis and Typhoid

Fungal diseases - Candidiasis, Aspergillosis, Yeast

Protozoal diseases – Malaria, Filaria & Diseases spread by House Fly. Viral Diseases - Hepatitis- A & C and AIDS.

<u>UNIT-III:</u>

No. of hours: 10

Description and pathology of diseases caused by Aspergillus, Penicillium. Description and pathology of diseases caused by hemoflagellates; *Leishmania donavani*, *L.tropica*,

Trypanosoma gambiense. Principles of chemotherapy, Antibacterial drugs – Penicillin, Antifungaldrugs – Nystatin, Antiviralagents – Robovirin, Drug resistance in bacteria. Interferon – Nomenclature, types & classification, Induction of interferon, types of Inducers.

UNIT- IV:

No. of hours: 10

Types of immunity - innate and acquired; active and passive; humoral and cell-mediated immunity.

Primary and secondary organs of immune system - Thymus, Bursa fabricus, bone marrow, spleen and lymph nodes.

Cells of immune system.

Identiification and function of B and T lymphocytes, null cells, monocytes, macrophages, neutrophils, basophils and eosinophils.

<u>UNIT – V:</u>

No. of hours: 10

Antigens - types, chemical nature, antigenic determinants, haptens. Factors affecting antigenicity.

Antibodies - basic structure, types, properties and functions of immunoglobulins.

Types of antigen-antibody reactions - Agglutinations, Precipitation, Neutralization,

complement fixation, blood groups.

Labeled antibody based techniques - ELISA, RIA and Immuno fluroscence. Polyclonal and monoclonal antibodies - production and applications.

Concept of Hypersensitivity and Autoimmunity. Hybridoma technology.

MBP – III: MEDICAL MICROBIOLOGY AND IMMUNOLOGY

TOTAL HOURS: 48

CREDITS: 2

- 1. Identification of human blood groups.
- 2. Separate serum from the blood sample (demonstration).
- 3. Estimation of blood haemoglobin.
- 4. Total Leukocyte Count of the given blood sample.
- 5. Differential Leukocyte Count of the given blood sample.
- 6. Immunodiffusion by Ouchterlony method.

- Identify bacteria E. coli, Pseudomonas, Staphylococcus, Bacillus, using laboratory strains on the basis of cultural, morphological and biochemical characteristics: IMViC, urease production and catalase tests
- 8. Isolation of bacterial flora of skin by swab method.
- 9. Antibacterial sensitivity by Kirby-Bauer method
- 10. Study symptoms of the diseases with the help of photographs: Anthrax,

Polio, Herpes, chicken pox, HPV warts, Dermatomycoses (ring worms)

11. Study of various stages of malarial parasite in RBCs using permanent mounts.

SUGGESTED READING:

- Ananthanarayan R. and Paniker C.K.J. (2009) Textbook of Microbiology. 8th edition, University Press Publication.
- Brooks G.F., Carroll K.C., Butel J.S., Morse S.A. and Mietzner, T.A. (2013) Jawetz, Melnick and Adelberg's Medical Microbiology. 26th edition. McGraw Hill Publication.
- Delves P, Martin S, Burton D, Roitt IM. (2006). Roitt's Essential Immunology.11th edition Wiley-Blackwell Scientific Publication, Oxford.
- Goldsby RA, Kindt TJ, Osborne BA. (2007). Kuby's Immunology. 6th edition W.H. Freeman and Company, New York.
- Kuby's Immunology. 6th edition W.H. Freeman and Company, New York.
- Jawetz, Melnick and Adelberg's Medical Microbiology. 26th edition. McGraw Hill Microbiology. 4th edition. Elsevier Publication.
- Willey JM, Sherwood LM, and Woolverton CJ. (2013) Prescott, Harley and Klein's Microbiology. 9th edition. McGraw Hill Higher Education.

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 <u>MBT – IV INDUSTRIAL MICROBIOLOGY</u>

<u>UNIT – I</u>

No. of hours: 7

Microorganisms of industrial importance – yeasts (*Saccharomyces cerevisiae*), moulds (*Aspergillus niger*) bacteria (*E.coli*), actinomycetes (*Streptomyces griseus*). Industrially important Primary and secondary microbial metabolites. Screening techniques. Techniques involved in selection of industrially important metabolites from microbes.

<u>UNIT – II</u>

No.of hours: 10

Fermentation and fermenter: concept and discovery of fermentation. Fermenter: its parts and function. Types of fermenter – batch, continuous and fed batch.

Types of fermentation processes – solid state, liquid state, batch, fed-batch, continuous.

Basic concepts of Design of fermenter.

Ingredients of Fermentation media.

Downstream processing - filtration, centrifugation, cell disruption, solvent extraction.

<u>UNIT – III</u>

No.of hours: 8

No.of hours: 7

Microorganisms involved in Pharma and therapeutic enzymes. Enzymes used in detergents, textiles and leather industries. Production of amylases and Proteases. Production of therapeutic enzymes. Role of microorganisms in bioleaching and textile industry.

<u>UNIT – IV</u>

Industrial microorganisms: cell growth, microbial growth kinetics, factors affecting growth, basic nutrition, principles of production media, components of media, chemical composition of media. Microbial production of Industrial products: Citric acid, Ethanol, Penicillin, Glutamic acid, and vitamin B12.

$\underline{UNIT} - \underline{V}$

Bioreactors: basic structure of bioreactor, types of bioreactors, kinetics and methodology of batch and continuous bioreactors. Sterilization of bioreactors: fibrous filter sterilization. Aeration and agitation: agitation in shake flask and tube rollers.

No.of hours:7

MBP – IV INDUSTRIAL MICROBIOLOGY

Total hours: 36

Credits: 2

- 1. Production of ethanol
- **2**. Estimation of ethanol
- 3. Isolation of amylase producing microorganisms from soil
- 4. Production of amylase from bacteria and fungi
- 5. Assay of amylase
- 6. Demonstration of fermenter
- 7. Production of wine from grapes
- 8. Growth curve and kinetics of any two industrially important microorganisms.
- 9. Microbial fermentation for the production and estimation of ethanol from grapes
- 10. Microbial fermentation for the production and estimation of citric acid

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 MBT – V: MOLECULAR BIOLOGY AND MICROBIAL GENETICS

TOTAL HOURS: 48

CREDITS: 4

UNIT- I

No. of hours: 8

DNA and RNA as genetic material. Structure and organization of prokaryotic DNA. Watson and Crick model of DNA. Extra chromosomal genetic elements - Plasmids and transposons. Replication of DNA - Semi conservative mechanism, Enzymes involved in replication.

<u>UNIT-II</u>

Mutations - spontaneous and induced, base pair changes, frame shifts, deletions, inversions, tandem duplications, insertions.

Mutagens - Physical and Chemical mutagens.

No. of hours: 10

Outlines of DNA damage and repair mechanisms.

Genetic recombination in bacteria - Conjugation, Transformation and Transduction.

UNIT- III

No. of hours: 10

Concept of gene \Box Muton, Recon and Cistron. One gene one enzyme and one gene one polypeptide hypotheses.

Types of RNA and their functions.

Genetic code.

Structure of ribosomes. Bacterial recombination – Bacterial transformation, Bacterial conjugation, Transduction– Generalized and specialized transductions.

UNIT- IV

No. of hours: 8

Types of genes - structural, constitutive, regulatory, clustered genes and the control of gene expression. Regulation of gene expression in bacteria - operon concepts - Negative and positive control of the Lac Operon, trp operon. Poly and Mono cistronic m-RNA.

<u>UNIT- V</u>

No. of hours: 10

Transcription: Enzymatic Synthesis of RNA - Basic features of RNA synthesis, *E.coli* RNA polymerase, Classes of RNA molecules, processing of tRNA and rRNA in *E.coli*, Transcription in Eukaryotes, Eukaryotic rRNA genes, formation of eukaryotic tRNA molecules, RNA Polymerases of eukaryotes. **Translation:** Outline of Translation, The Genetic Code, The Decoding System, Codon Anticodon interaction. Protein Synthesis, Complex Translation units, Inhibitors and Modifiers of protein synthesis, Protein Synthesis in Eukaryotes.

MBP – V: MOLECULAR BIOLOGY AND MICROBIAL GENETICS

TOTAL HOURS: 48

CREDITS: 2

- 1. Study of different types of DNA and RNA using micrographs and model / schematic representations.
- 2. Study of semi-conservative replication of DNA through micrographs / schematic representations
- 3. Isolation of genomic DNA from E. coli

- 4. Estimation of DNA using UV spectrophotometer.
- 5. Resolution and visualization of DNA by Agarose Gel Electrophoresis.
- 6. Resolution and visualization of proteins by Polyacrylamide Gel Electrophoresis (SDS PAGE).
- 7. Problems related to DNA and RNA characteristics, Transcription and Translation.
- 8. Induction of mutations in bacteria by UV light.
- 9. Instrumentation in molecular biology Ultra centrifuge, Transilluminator, PCR

SUGGESTED READING:

- Freifelder, D. (1990). Microbial Genetics. Narosa Publishing House, New Delhi.
 Freifelder, D. (1997). Essentials of Molecular Biology. Narosa Publishing House, New Delhi.
- Glick, B.P. and Pasternack, J. (1998). Molecular Biotechnology, ASM Press, Washington D.C., USA.
- Lewin, B. (2000). Genes VIII. Oxford University Press, England.
- Maloy, S.R., Cronan, J.E. and Freifelder, D. (1994). Microbial Genetics, Jones and Bartlett Publishers, London.
- Ram Reddy, S., Venkateshwarlu, K. and Krishna Reddy, V. (2007) A text Book of Molecular Biotechnology. Himalaya Publishers, Hyderabad.
- Sinnot E.W., L.C. Dunn and T. Dobzhansky. (1958). Principles of Genetics. 5 th Edition. McGraw Hill, New York.
- Smith, J.E. (1996). Biotechnology, Cambridge University Press.
- Snyder, L. and Champness, W. (1997). Molecular Genetics of Bacteria. ASM press,
- Strickberger, M.W. (1967). Genetics. Oxford & IBH, New Delhi.
- Verma, P.S. and Agarwal, V.K. (2004). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S. Chand & Co. Ltd., New Delhi.

VthSEMEISTER PAPERS

THERE WILL BE THREE PAIRS OF EACH DOMAIN OF CORE COURSE. STUDENT HAS TO CHOOSE ONE PAIR FROM EACH DOMAIN.

<u>A – PAIR</u>

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 MBT A1 – FOOD, AGRICULTURE AND ENVIRONMENTAL MICROBIOLOGY

<u>UNIT – 1</u>

No.of Hours:8

Intrinsic and extrinsic parameters that affect microbial growth in food Microbial spoilage of food - fruits, vegetables, milk, meat, egg, bread and canned foods Food intoxication (botulism).

Food-borne diseases (salmonellosis) and their detection.

<u>UNIT – II</u>

Principles of food preservation - Physical and chemical methods.

Fermented Dairy foods - cheese and yogurt.

Microorganisms as food – SCP, edible mushrooms (white button, oyster and paddy straw). Probiotics and their benefits.

<u>UNIT – III</u>

Soil Microbiology: Microbial groups in soil, microbial transformations of carbon, nitrogen, phosphorus and sulphur, Biological nitrogen fixation. Microflora of Rhizosphere and Phyllosphere microflora, microbes in composting. Importance of mycorrhizal inoculums, types of mycorrhizae associated plants, mass inoculums. Production of VAM, field applications of Ectomycorrhizae and VAM.

<u>UNIT - IV</u>

Beneficial microorganisms in Agriculture: Biofertilizer (Bacterial Cyanobacterial and Fungal), microbial insecticides, Microbial agents for control of Plant diseases, Biodegradation, Biogas production, Biodegradable plastics, Plant – Microbe interactions.

Diseases caused by bacteria and fungi to various commercial and food crops (2 examples each) Management of soil biota for maintaining soil fertility. Convertion of waste lands into fertile lands. Management of soil nutrients.

<u>UNIT – V</u>

No.of Hours: 12

Terrestrial Environment: Soil profile and soil microflora. Aquatic Environment: Microflora of fresh water and marine habitats. Atmosphere: Aeromicroflora and dispersal of microbes.

No.of Hours:8

No.of Hours:8

No.of Hours:8

Extremophiles. Nutrient cycling - Carbon, nitrogen, phosphorus. Methods to detect portability of water samples.

Outlines of Solid Waste management: Sources and types of solid waste, Methods of solid waste disposal (composting and sanitary landfill).

Liquid waste management: Composition and strength of sewage (BOD and COD), Primary, secondary and tertiary sewage treatment.

MBP A1 – FOOD, AGRICULTURE AND ENVIRONMENTAL MICROBIOLOGY

Total hours: 40

Credits: 2

- **1.** Isolation of bacteria and fungi spoiled bread / fruits / vegitables
- 2. Preparation of yogurt / dahi
- 3. Determination of microbiological quality of milk sample by MBRT
- 4. Enumeration of bacteria, fungi and actinomycetes from soil
- 5. Enumeration and identification of rhizosphere micro flora
- 6. Isolation of rhizobium from root nodules.
- 7. Isolation of azatobcter from soil.
- 8. Observation description of any three bacterial and fungal plant diseases
- 9. Staining and observation of VAM.
- 10. Analysis of soil pH, Moisture content and water holding capacity.
- 11. Study of air flora by petriplate exposure method.
- 12. Analysis of potable water: SPC, Presumptive, confirmed and completed test, determination of coli form count in water by MPN.
- 13. Determination of Biological Oxygen Demand (BOD) of waste water samples.

SUGGESTED READINGS:

- Atlas RM and Bartha R. (2000). Microbial Ecology: Fundamentals & Applications. 4th edition, Benjamin/Cummings Science Publishing, USA
- Barton LL & Northup DE (2011). Microbial Ecology. 1st edition, Wiley Blackwell, USA
- Campbell RE. (1983). Microbial Ecology. Blackwell Scientific Publication, Oxford, England.

- Coyne MS. (2001). Soil Microbiology: An Exploratory Approach. Delmar Thomson Learning.
- Lynch JM & Hobbie JE. (1988). Microorganisms in Action: Concepts & Application in Microbial Ecology. Blackwell Scientific Publication, U.K.
- Madigan MT, Martinko JM and Parker J. (2014). Brock Biology of Microorganisms. 14th edition. Pearson/ Benjamin Cummings.
- Maier RM, Pepper IL and Gerba CP. (2009). Environmental Microbiology. 2nd edition, Academic Press.
- Martin A. (1977). An Introduction to Soil Microbiology. 2nd edition. John Wiley & Sons Inc. New York & London.
- Okafor, N (2011). Environmental Microbiology of Aquatic & Waste systems. 1st edition, Springer, New York.
- Singh A, Kuhad, RC & Ward OP (2009). Advances in Applied Bioremediation.
 Volume 17, Springer-Verlag, Berlin Hedeilberg
- Stolp H. (1988). Microbial Ecology: Organisms Habitats Activities. Cambridge University Press, Cambridge, England.
- Subba Rao NS. (1999). Soil Microbiology. 4th edition. Oxford & IBH Publishing Co. New Delhi.
- Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology. 9th edition. McGraw Hill Higher Education.

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 MBT A2 – MANAGEMENT OF HUMAN MICROBIAL DISEASES AND DIAGNOSIS

<u>UNIT – I</u>

No.of Hours: 8

Definition and concept of health, disease, infection, and pathogen. Bacterial, Viral, Fungal and Protozoan Diseases of various human body systems. Disease associated clinical samples for diagnosis - any three diseases of each.

<u>UNIT- II</u>

No. of hours: 8

General account of epidemiology: principles of epidemiology, current epidemics (AIDS, nosocomal, acute respiratory syndromes). Collection of clinical samples (oral cavity, throat, skin, blood, CSF, urine and faeces) and precautions required.

Method of transport of clinical samples to laboratory and storage.

<u>UNIT- III</u>

No. of hours: 8

Mechanism of bacterial pathogenicity, colonization and growth, virulence, virulence factors, exotoxins, enterotoxins, endotoxins and neurotoxins.

Examination of sample by staining - Gram stain, Ziehl-Neelson staining for tuberculosis, Giemsa-stained thin blood film for malaria.

Preparation and use of culture media - Blood agar, Chocolate agar, Lowenstein-Jensen medium, MacConkey agar, Distinct colony properties of various bacterial pathogens.

<u>UNIT- IV</u>

No. of hours: 6

Serological Methods - Agglutination, ELISA, immunofluorescence, Nucleic acid based methods - PCR, Nucleic acid probes.

Diagnosis of Typhoid, Dengue and HIV, Swine flu. Role of vectors- biology of vectors. (1) House fly (2) Mosquitoes (3) sand fly.

<u>UNIT- V</u>

No. of hours: 6

Importance, Determination of resistance/sensitivity of bacteria using disc diffusion method, Determination of minimal inhibitory concentration (MIC) of an antibiotic by serial double dilution method. Epidemiological investigations to identify a disease, Problems of drug resistance and drug sensitivity. Drug resistance in bacteria.

MBP- AII: MICROBIAL DIAGNOSIS IN HEALTH CLINICSTOTAL HOURS: 40CREDITS: 2

1. Collection transport and processing of clinical specimens (Blood, Urine, Stool and Sputum). Receipts, Labeling, recording and dispatching clinical specimens.

2. Physical, Chemical & microscopic examination of clinical samples – urine, stool, puss, sputum.

3. Isolation and identification of following pathogens from clinical samples: *E.coli, Salmonella and Psedumonas.*

- 4. Demonstration of permanent slides of the following parasites:
 - a) Entamoeba histolytica
 - b) Ascaris spps.
 - c) Plasmodium spps.
 - d) Mycobacterium tuberculosis & Mycobacterium leprae
- 5. Estimation of hemoglobin (Acid hematin and cyan methanoglobin method).
- 6. ESR and PCV determination.
- 7. Immuno hematology: Blood group typing by slide test & tube for ABO & Rh systems.
- 8. Isolation of bacteria in pure culture and Antibiotic sensitivity.

SUGGESTED READING

- Ananthanarayan R and Paniker CKJ (2009) Textbook of Microbiology, 8th edition, Universities Press Private Ltd.
- Brooks G.F., Carroll K.C., Butel J.S., Morse S.A. and Mietzner, T.A. (2013) Jawetz, Melnick and Adelberg's Medical Microbiology. 26th edition. McGraw Hill Publication.
- Collee JG, Fraser, AG, Marmion, BP, Simmons A (2007) Mackie and Mccartney Practical Medical Microbiology, 14th edition, Elsevier.
- Randhawa, VS, Mehta G and Sharma KB (2009) Practicals and Viva in Medical Microbiology 2ndedition, Elsevier India Pvt Ltd.
- Tille P (2013) Bailey's and Scott's Diagnostic Microbiology, 13th edition, Mosby.

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 MBT BI – MICROBIAL BIOTECHNOLOGY AND r – DNA TECHNOLOGY

TOTAL HOURS: 36

Introduction to microbial biotechnology, Bacterial genes, genomes and genetics. Recombinant microbial biotechnology products, biotechnology regulation and ethics. **Restriction and Modification**: Classification of restriction endonucleases. Enzymes used in molecular cloning; Polymerases, ligases, phosphatases, kinases and nucleases; Advanced Molecular biology techniques, Electrophoresis and Blotting techniques.

UNIT- II

UNIT – I

Cutting and joining DNA: (cohesive end ligation, methods of blunt end ligation).

Transfection and transformation. Selection of transformed cells. Screening methods (Genetic marker and blue white screening).

Biomass and bio fuels: plant biomass (cellulose, starch, pectin, gum materials). Animal biomass (chitin, milk, whey, slaughter, house waste). Microbial biomass (alagal blooms, in fresh and sea water), fungal mushrooms, fermentation waters by yeasts, and bacterial biomass.

<u>UNIT- III</u>

No. of hours: 7

Cloning vehicles - Plasmid, Bacteriophage, Construction of genomic and cDNA libraries.

Advantages of cDNA libraries. Concept of single cell proteins, probiotics and their applications. Microbial production of fuels: alcohols, hydrogen and methane. Microbial production of polymers: xanthenes gums.

<u>UNIT- IV</u>

No. of hours: 7

Methods of gene sequencing - Maxam - Gilberts and Sanger's dideoxy chain termination methods; Polymerase chain reaction technique (Components in PCR and PCR conditions). Methods of gene transfer in fungi, yeast and higher plants using microinjection, microprojectile bombardment (gene gun method, Electroporation and *Agrobacterium* mediated transformation. Expression of cloned genes in bacteria, yeast, plant and animal cells. Basic principles and application of biosensors. Nucleic acid probe technology.

<u>B – PAIR</u>

CREDITS: 3 No. of hours: 8

No. of hours: 8

UNIT- V

No. of hours: 7

Concept of genetically modified microorganisms. Bt cotton : production, advantages and limitations.

Probable advantages and disadvantages of genetically modified crops. Role of microorganisms in creation of transgenic animals and plants.

MBT- BI : MICROBIAL BIOTECHNOLOGY AND r – DNA TECHNOLOGY

TOTAL HOURS: 36

CREDITS: 2

- 1. Culturing of mushrooms
- 2. Isolation of yeast from grapes.
- 3. Production of wine
- 4. Production of ethyl alcohol
- 5. Isolation of Plasmid DNA from E.coli
- 6. Tissue culture: callus cultivation
- 7. Fermentative production of ethyl alcohol
- 8. Transformation in Bacteria using plasmid.
- 9. Restriction digestion of DNA and its electrophoretic separation.
- 10. Ligation of DNA molecules and their testing using electrophoresis.
- 11. Activity of DNAase and RNAse on DNA and RNA.
- 12. Isolation of Plasmid DNA.
- 13. Demonstration of PCR.

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 <u>MBT B2 – BIOSTATISTICS AND BIOINFORMATICS</u>

TOTAL HOURS: 36

<u>UNIT – I</u>

CREDITS: 3 No.of hours: 7

Definition, nature and scope of bioinformatics. Bioinformatics versus computational biology. Branches of bioinformatics. Basic concepts in bioinformatics. Introduction to Biological data bases: NCBI, EMBL, EXPASY, PIR, Pfam. Concept of World Wide Web: HTML, HTPP.

<u>UNIT – II</u>

Searching sequence data bases using BLAST. Multiple sequence alignment– progressive alignment–profiles–multi dimensional dynamic programming. Biostatistics: Measures of Central tendency and distribution–mean, median, mode, range, standard deviation, variance.

<u>UNIT – III</u>

No.of hours: 7

Basic principles of probability theory, Bayes theorem, Normal distribution, statistical inference – Types of errors and levels of significance. Comparison of variance (F-test), small sample test, t-test for comparison of means, chi square test. Analysis of variance–one way and two way, multiple comprises.

<u>UNIT – IV</u>

No.of hours: 7

Correlation and Linear regression. Sequence Analysis: Introduction to hidden Markov models. Genomics and proteomics: Molecular phylogenetics: Construction of Phytogenetic trees using parsimony method and branch & bound method. Clustering methods– UPGMA & neighborjoining. Fragment assembly, peptide sequencing using mass and spectroscopy data. Comparative genomics.

<u>UNIT – V</u>

No.of hours: 8

Modeling: Protein secondary structure prediction–Chou Fasmanrules– Neural networks– discriminant analysis. Prediction of transmembrane segments in Membrane proteins. Protein3D structure prediction– homology– threading – Potential energy functions–energy minimization– molecular dynamics–simulated annealing.

MBP B2 - BIOSTATISTICS AND BIOINFORMATICS

TOTAL HOURS: 36

CREDITS: 2

- 1. Isolation of plasmid DNA from E.coli cells
- 2. Quantitative and qualitative analysis of proteins / DNA by using spectrophotometer.
- 3. Demonstration of Southern hybridization
- 4. Demonstration of amplification DNA by PCR.
- 5. Use of software for sequence analysis of nucleotides and proteins.
- 6. Problem related to t test and $chi^2 test$.
- 7. Use of Internet/software for sequence analysis of nucleotides and proteins:
- 8. Studies of public domain data bases for nucleic acid and protein sequences.
- 9. Determination of protein structure (PDB).
- 10. Genome sequence analysis
- Problems related to measures of central tendency, dispersion, t-test and chi Square test.

SUGGESTED READINGS:

- 1. Daniel, 2006, Biostatistics, Eighth Edition. John Wisley and sons.
- 2. Durbin, Eddy, Krogh, Mithison, Biological sequence analysis.
- 3. T.A.AttwoodandD.J.parry-smith, 2001, Introduction of Bioinformatics.
- 4. A.D.Baxevaris, 1998, Bioinformatics: Apractical guidetotheanalysis of

Genes and proteins, (Edited) B.F.Publication.

5. David W, 2005, Bio-informatics;sequenceandGenomeAnalysis,2ndEdition

By Mount CB Spublishers.

C - PAIR

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 MBT CI – MICROBIAL QUALITY CONTROL INSTRUMENTATION AND **TECHNIQUES**

TOTAL HOURS: 36

CREDITS: 3

No.of hours:7

UNIT – I

Microbial quality control definition, history and introduction. Standard Methods involved in assessment of microbial quality control. Q.A and Q.C definitions and importance. Traditional Microbiological Quality Controling methods: Sampling methods, TVC, APC and serial dilution techniques. Microbiological criteria. Laboratory facility design for quality control: Sterilization, disinfection and decontamination. Personnel training: Hygiene and handling techniques. Documentation. Good laboratory practices.

UNIT – II

Culture media used in OC and OA: Design of specialized media for identification of pathogens. Good laboratory practices in culture media preparation: raw material, water, pH. Uses of media. Selective and indicator media used in pharmaceutical and food industries. Instruments associated in QC and QA: Principle involved, working conditions, uses and precautions of Laminar Air Flow (LAF), Autoclave, Incubator, pH meter, Colony counter, Hot air oven, Centrifuges and storage devices.

UNIT – III

Techniques for enumeration of microorganisms: sample preparation from Aqueous, soluble, insoluble, medical and pasteurized materials. Counting methods: pour plate, spread plate, membrane filtration. Most Probable Number (MPN) and MIC. Turbidimetric methods. Staining techniques for identification bacteria and Fungi.

UNIT – IV

Microscopy – Principles of light, phase, fluorescent & electron microscopes; Microscopic techniques: Basic principles and applications of phase - contrast microscopy, fluorescent microscopy and electron microscopy, types of electron microscopy- scanning and transmission. Radio isotopes: radiometric analysis, stable and radioactive isotopes, preparation, labeling, detection and measurement of isotope.

UNIT - V

No.of hours:7

No.of hours: 8

No.of hours:7

No.of hours: 7

Principles of Centrifugation – Centrifugation techniques – preparative and analytical methods, density gradient centrifugation. General principles and applications of chromatography – Paper, Column, Thin layer, Gas, Ion exchange, Affinity chromatography, HPLC, FPLC, GCMS and Gel filtration. Electrophoresis- moving boundary, zone (Paper Gel) electrophoresis. Immuno electrophoresis. Immuno blotting. Isoelectric focusing, 2-Delectrophoresis, Principles of colorimetry

MBP-C1 : MICROBIAL INSTRUMENTATION AND BIOTECHNIQUES

Total hours: 36

Credits: 2

- 1. Isolation and enumeration of bacteria form food / pharmaceutical source.
- 2. Quality Assurance of water by MPN method.
- 3. Preparation of any two selective and indicator media commonly used Q.A & Q.C
- 4. Microbial quality of in and around laboratory conditions.
- 5. Isolation and Identification of fungi by using selective media and staining procedures.
- 6. Identification of MIC of any one antibiotic.
- 7. Colorimetric and spectroscopic estimation of nucleic acids.
- 8. Microscopic observations of examination of bacteria, fungi and actinomycetes.
- 9. Separation of cell components by centrifugation technique.
- 10. Demonstration of immune electrophoresis.
- **11.** Demonstration of HPLC.

Suggested readings:

- 1. Hand book of Microbial Quality control by Rosamund. M, Baird Norman. A, Hodges and Stephen. P, Denyer. CRC press.
- The Microbiological Quality of Food, 1st Edition, Editors: Antonio Bevilacqua Maria Rosaria Corbo Milena Sinigaglia eBook ISBN: 9780081005033 Imprint:Wood head Publishing.
- Guide to Microbiological Control in Pharmaceuticals and Medical Devices, Second Edition, Stephen P. Denyer, Rosamund M. Baird, CRC Press.

- WILSON & WALKER, Practical Biochemistry: Principles and techniques, Academic publishers.
- 5. UPADHYAY, UPADHYAY &NATH, Biophysical Chemistry: Principles and techniques, Himalaya Publishers.

B.Sc MICROBIOLOGY (CBCS) REVISED SYLLABUS - 2020 <u>MBT – C2: DRUG DESIGN, DISCOVERY AND ITELECTUAL PROPERTY RIGHTS</u> (IPR)

TOTAL HOURS: 36

No. of Hours: 7

CREDITS: 3

<u>Unit – I</u>

Introduction- History of drug design, Current approaches and philosophies in drug design, Molecular mechanisms of diseases and drug action with examples. Pharmaceutical products of microbial origin (antibiotics) animal origin (sex hormones), plant origin (Alkaloids & Morphine). Sources of Drugs- Microbial drugs, Plants as a source of drugs, *E. coli* as a source of recombinant therapeutic proteins.

<u>Unit – II</u>

Expression of recombinant proteins in yeasts, animal cell culture systems.. Rational drug design and Combinatorial approaches to drug discovery. Drug development process- Impact of genomics and related technologies upon drug discovery: Gene chips, Proteomics, Structural genomics and Pharmacogenetics. Drug manufacturing process- Guides to good manufacturing practice.

<u>Unit – III</u>

Vaccines and adjuvant- Traditional vaccine preparations, Attenuated and inactivated viral and bacterial vaccines, Toxoids. Peptide vaccines. Adjuvant technology. Nucleic acid as drugs- Gene therapy: Basic approach to gene therapy, Vectors used in gene therapy - Manufacture of viral vectors, Non-viral vectors. Gene therapy and genetic disease, cancer, Gene therapy and AIDS. Gene based vaccines.

<u>Unit – IV</u>

Introduction: general introduction to IPR (parent, plant breeder's right). Trademarks, industrial design, trade secrets (or) undisclosed information integrated circuit designs.

No. of Hours: 7

No. of Hours: 7

No. of Hours: 8

Patenting principle, international – standards and patent validity (neem and relaxins), recent developments in patent system and patentability of biotechnology, invention IPR issues of the Indian context. Copy right and rights related to copy right, International standards as per WHO, ISI, bio safety and validation.

<u>Unit – V</u>

No. of Hours: 7

Biotechnology and hunger: challenges for the Indian biotechnological research and industries. Bio safety: the Cartagena protocol on bio safety.

Bio safety management: key to the environmentally responsible use of biotechnology, ethical implications of biotechnology product techniques, social and ethical implications of biological weapons

<u>MBT – C2: DRUG DESIGN, DISCOVERY AND ITELECTUAL PROPERTY RIGHTS</u> (IPR)

TOTAL HOURS: 40

CREDITS: 3

- **1.** Isolation of antibiotic producing bacteria from soil samples
- 2. Isolation of drug resistant plasmid from bacteria (E.coli).
- 3. Isolation of Actinomycetes from soil.
- 4. Identification of antibacterial activity of actinimycetes.
- 5. Identification of antibacterial activity of fungi
- 6. Identification of antagonistic activity of any two fungal species.
- 7. Assay of any one antibiotic (Penicillin).
- 8. Determination of MIC of any one antibiotic (penicillin / streptomycin).
- 9. Study of components and design of a BSL III laboratory
- 10. Filing applications for approval from bio safety committee
- 11. Filing primary applications for patents
- 12. Study of steps of patenting process
- 13. A case study of patent.
- 14. Study of bio safety measures in pharmaceutical industry.
- 15. Study on QA & QC parameters followed in R&D laboratory.

SUGGESTED READINGS:

1.W.B.Hugo & A.D.Russell, Pharmaceutical Microbiology edited, 6thEdition, Black Well science.

2.Shanson D.C., Microbiology in clinical practice, 2ndedition, London; Wright.

3.T Sammes Ellis Horwood, opicsin Antibiotic chemistryVolItoV.

4.Wulf Crueger, Biotechnology – A text book of Industrial Microbiology, 2nd Edition, Panima publishers

5. A.H.Patel, 1984, Industrial Microbiology, Macmilan India Limited.

6. Coulson C.J., London; Taylor and Francis, Molecular mechanisms of drugaction.

7. DenyesS.P.&Baird R.M.Chichester, Ellis Horwood, Guide to microbiological Control in Pharmaceuticals.

8. Murray S.Cooper, Quality control in the Pharmaceutical Industry-Edt., Vol-II,

Academic press, NewYork.

9.Sydney H.Willin, Murray M.Tuckerman, William S.Hitchings IV, Good

Manufacturing practices of pharmaceuticals, second Edt., Mercel Dekker NC Nework.

10.RajeshBhatia,RattanlalIhhpunjani,QualityassuranceinMicrobiology,CBS Publisher&Distributors,NewDelhi.

Expected out comes of the courseBCH-1:

1. The student gains knowledge in the chemistry of biomolecules such as water, carbohydrates, lipids, proteins and nucleic acids which make up all the living organisms including humans.

2. This will enable the student to understand the importance of these biomolecules in living organisms and effects of their alterations in diseasesoccurring in plants, animals and humans.

3. The practicals will give the expertise to the student for analysis of any biological or non biological sample for identification of its chemical composition

Major Domain Subject: BIO-CHEMISTRY SEMESTER-I

Course: Biomolecules

Code: BCH-1

60 HRS

(5 periods/week)

Unit - I: Biophysical Concepts

Water as biological solvent, Buffers, measurement ofpH, electrodes, Biological relevance of pH, pKa value, analysis of drinking water and pond water, Total dissolved salts (TDS), BOD, COD, soil analysis (texture, organic matter, elements), Electrical conductivity.

12 hours

12 hours

12 hours

Unit - II: Carbohydrates

Carbohydrates: Classification, monosaccharides, D and L designation, open chain and cyclic structures, epimers and anomers, mutarotation, reactions of carbohydrates (due to functional groups - hydroxyl, aldehyde and ketone. Amino sugars, Glycosides. Structure and biologicalimportance of disaccharides (sucrose, lactose, maltose, isomaltose, trehalose), trisaccharides (raffinose, melezitose), structural polysaccharides (cellulose, chitin, pectin) and storage polysaccharides (starch, inulin, glycogen). Glycosaminoglycans, Bacterial cell wall polysaccharides. Outlines of glycoproteins, glycolipids and blood group substances.

Unit – III: Lipids

Lipids: Classification, saturated and unsaturated fatty acids, structure and properties of fats and oils (acid, saponificition and iodine values, rancidity). General properties and structures of phospholipids. Prostaglandins-structure, types and biological role. Lipoproteins- types and functions, Biomembranes-formation of micelles, bilayers, vesicles, liposomes. Membrane composition and organization - Fluid mosaic model.

Unit-IV: Amino Acids and Proteins 12 hours

Amino Acids: Classification, structure, stereochemistry, chemical reactions ofamino acids due to carbonyl and amino groups. Titration curve of glycine and px values. Essential and nonessential amino acids, non-protein amino acids. Peptide bond -

nature and conformation. Naturally occurring peptides - glutathione, enkephalin.

Proteins: Classification based on solubility, shape and function. Determination of amino acid composition of proteins. General properties of proteins, denaturation and renaturation of proteins. Structural organization of proteins- primary, secondary, tertiary and quaternary structures (Eg. Hemoglobin and Myoglobin).

Unit-V: Nucleic acids and porphyrins 12 hours

Types of RNA and DNA. Structure of purines and pyrimidines, nucleosides, nucleotides. Stability and formation of phosphodiester linkages. Effect of acids, alkali and nucleases on DNA and RNA. Structure of Nucleic acids-Watson-Crick DNA double helix structure, denaturation and renaturation kinetics of nucleic acids-, *T*m-values and

their significance, cot curves and their significance.

Structure of porphyrins:Identification of Porphyrins, Protoporphyrin, porphobilinogen properties, Structure of metalloporphyrins–Heme, cytochromes and chlorophylls.

I Semester Practicals: Qualitative Analysis

- 1. Preparation of buffers (acidic, neutral and alkaline) and determination ofpH.
- 2. Qualitative identification of carbohydrates- glucose, fructose, ribose/xylose,maltose,sucrose, lactose, starch/glycogen.
- 3. Qualitative identification of amino acids-histidine, tyrosine, tryptophan, cysteine, arginine.
- Qualitative identification of lipids- solubility, saponification, acrolein test, Salkowski test, Lieberman-Burchardtest.
- 5. Preparation of Osazones and their identification.
- 6. Absorptionmaximaofcoloredsubstances-p-Nitrophenol, Methylorange.
- 7. Absorption spectra of protein-BSA, nucleic acids-Calf thymus DNA.

Recommended books:

- 1. Soil Testing Manual by Dr. G. S. Wagh.
- 2. Soil Testing and Plant Analysis: Part I Soil Testing, Volume 2, SSSA Special publications by Glenn W. Hardy.
- 3. Soil Analysis: An interpretation manual by K. I. Peverill, L. A. Sparrow, D. J. Reuter
- 4. The biochemistry of Nucleic acids; Adams et al., Chapman and Hall, 1986.
- 5. Proteins: A guide to study by physical & chemical methods, Haschemeyer and Haschemeyer,
- 6. Proteins: Structure, function and evolution. Dickerson & Geis, 2nd Edn, Benjamin/Cummings.
- 7. Biochemistry Zubay C, Addison Wesley, 1986.
- 8. Biochemistry, A problem Approach, 2nd Edn. Wood, W.B. Addison Wesley 1981.
- 9. Biochemistry, Lehninger A.H.
- 10. Textbook of Biochemistry West, E.S., Todd, Mason & Vanbruggen, Macmillian&Co.
- 11. Principles of Biochemistry White-A, Handler, Pand Smith E.L. Mc Grew Hill.
- 12. Organic chemistry, I.L. Finar, ELBS. (1985).
- 13. Organic Chemistry by Morrison and Boyd (2000) Prentice Hall.
- 14. Fundamentals of Biochemistry by Donald Voet (1999).

Expected outcomes of the course BCH- II

- 1. The student will learn the various analytical techniques and their applications in separation and isolation of cells and tissues for studying their functional abnormalities
- 2. The knowledge in the analytical techniques will enable the student for isolation ,purification and chemical characterization of compounds from plants and microbes which will have medical or commercial importance.
- **3.** The practicals will provide the expertise to the student for quantification of electrolytes and other metal ions, hormones and identification of bacteria.
- **4.** The expertise gained by the student in this course can be useful in food industries ,pharma industries, clinical and microbiological labs.

Major Domain Subject: BIO-CHEMISTRY SEMESTER-II Course: Analytical techniques Code: BCH-II

60 HRS

(5 periods/week)

Unit-I: Cell homogenization and centrifugation

Methods of tissue homogenization: (Potter-Elvejham, mechnical blender, sonicator and enzymatic). Centrifugation techniques, principles and applications- differential, density gradient. Ultra-centrifugationpreparative and analytical.

Unit-II: Chromatographic techniques

Types of chromatographic techniques, Principle and applications - Paper chromatography- solvents, Rf value, applications; Thin layer chromatography- principle, choice of adsorbent and solvent, Rf value, applications; Gel filtration, Ion- exchange- principle, resins, action of resins, experimental techniques, applications, separation of metal ions; Affinity chromatography.

Unit-III: Spectroscopy and tracer techniques

Electromagnetic radiation, Beer-Lambert's law.

Colorimetry and Spectrophotometry, spectrofluorimetry, flame photometry. Tracer techniques: Radio isotopes, units of radio activity, half life, β and γ - emitters, use of radioactive isotopes in biology, ELISA, RIA.

Unit-IV: Electrophoresis

Electrophoresis- principles and applications of paper, polyacrylamide (native and SDS) and agarose gel electrophoresis, isoelectric focusing, immune-electrophoresis-types and applications.

Unit-V: Microbial techniques:

Microscopy: Basic principles of light microscopy, phase contrast, electron microscope and fluorescent microscope and their applications.

Preparation of different growth media, isolation and culturing and preservation of microbes, Gram's staining-Gram positive and Gram negative bacteria, motility and sporulation, Sterilization techniques-Physical methods, chemical methods, radiation methods, ultrasonic and. Antibiotic resistance.

Practical BCP- 201 :

Biochemical Techniques

List of Experiments:

- 1. Isolation of RNA and DNA from tissue/culture.
- 2. Qualitative Identification of DNA, RNA and Nitrogen Bases

12 hours

12 hours

12 hours

12 hours

12 hours

- 3. Isolation of egg albumin from egg white.
- 4. Isolation of cholesterol from egg yolk.
- 5. Isolation of starch from potatoes.
- 6. Isolation of casein from milk.
- 7. Separation of amino acids by paper chromatography.
- 8. Determination of exchange capacity of resin by titrimetry.
- 9. Separation of serum proteins by paper electrophoresis.

Recommended books:

- 1. Principles and Techniques of practical Biochemistry. Eds. Williams and Wilson.
- 2. Techniques in Molecular biology Ed. Walker & Gastra, Croom Helm, 1983.
- 3. Principles of instrumental analysis, 2nd Ed, Holt-Sanders, 1980.
- 4. An introduction to spectroscopy for Biochemistry. Ed. Brown S.N., Academic press
- 5. Analytical Biochemistry, Holmes and Hazel peck, Longman, 1983.
- 6. An introduction to practical biochemistry. David T. Plummer, Tata Mac Grew-Hill.
- 7. Biophysical chemistry, Edshall & Wyman, Academic press Vol. II & I.
- 8. A textbook of quantitative inorganic analysis including elementary instrumental analysis, Vogel ELBS.
- 9. Biochemical calculations Seigel, IH, 2nd Edit, John Wiley & sons Inc., 1983.
- 10. Analytical Biochemistry by Friefelder David

Outcomes of the course BCH-III

- 1. The student will get knowledge in enzymes, their physiological importance and other applications.
- 2. The student will know how the nutrients such as carbohydrates, lipids and proteins get metabolized for the purpose of energy and other physiological functions in the body. This will enable the student to understand the pathophysiology of metabolic diseases such as diabetes, atherosclerosis etc. which occur due to alterations in metabolisms.
- 3. The practicals will provide the expertise for quantification of enzymes' activities, glucose, proteins and lipid levels in blood which will have clinical applications.

Major Domain Subject: BIO-CHEMISTRY

Semester-III **Course: Enzymology, Bioenergetics and Intermediary Metabolism** Code: BCH-III

60 HRS (5 periods/week)

Unit-I: Enzymology

Introduction to Biocatalysis, differences between chemical and biological catalysis. Nomenclature and classification of enzymes. Definition of holo-enzyme, apo-enzyme, coenzyme, cofactor. Active site, Enzyme specificity. Principles of energy of activation, transition state. Interaction between enzyme and substrate-lock and key, induced fit models. Fundamentals of enzyme assay, enzyme units. Outlines of mechanism of enzyme action, factors affecting enzyme activity. Commercial application of enzymes.

Unit- II: Bioenergetics and Biological oxidation

Bioenergetics: Thermodynamic principles – Chemical equilibria; free energy, enthalpy (H), entropy (S). Free energy change in biological transformations in living systems; High energy compounds. Energy, change, oxidationreduction reactions.

Organization of electron carriers and enzymes in mitochondria. Classes of electron-transferring enzymes, inhibiters of electron transport. Oxidative phosphorylation. Uncouplers and inhibitors of oxidative phosphorylation. Mechanism of oxidative phosphorylation.

Unit-III: Carbohydrate Metabolism.

Concept of anabolism and catabolism. Glycolytic pathway, energy yield. Fate of pyruvate-formation of lactate and ethanol, Citric acid cycle, regulation, energy yield, amphipathic role. Anaplerotic reactions. Glycogenolysis and glycogenesis. Pentose phosphate pathway. Gluconeogenesis. Photosytnthesis- Light and Dark reactions, Calvin cycle, C₄ Pathway. Disorders of carbohydrate metabolism- Diabetes Mellitus.

12 hours

12 hours

12 hours

Unit-IV: Lipid Metabolism

Catabolism of fatty acids (β - oxidation) with even and odd number of carbon atoms, Ketogenesis, *DE NOVO* synthesis of fatty acids, elongation of fatty acids in mitochondria and microsomes, Biosynthesis and degradation of triacylglycerol and lecithin. Biosynthesis of cholesterol. Disorders of lipid metabolism.

Unit-V: Metabolism of Amino acids

12 hours

General reactions of amino acid metabolism- transamination, decarboxylation and deamination, Urea cycle and regulation, Catabolism of carbon skeleton of amino acids- glycogenic and ketogenic amino acids. Metabolism of glycine, serine, aspartic acid, methionine, phenylalanine and leucine. Biosynthesis of creatine. Inborn errors of aromatic and branched chain amino acid metabolism.

12 hours

Practical – BCP-301: Quantitative analysis

- 1. Assay of amylase.
- 2. Assay of urease.
- 3. Assay of catalase
- 4. Effect of pH, temperature and substrate concentration on enzyme activity.
- 5. Estimation of glucose by DNS method.
- 6. Estimation of glucose by Benedict's titrimetric method.
- 7. Estimation of total carbohydrates by Anthrone method.
- 8. Tests for lipids- Salkowski test, Lieberman-Burchard test.
- 9. Estimation of amino acid by Ninhydrin method.
- 10. Estimation of protein by Biuret method.

Recommended books:

- 1. Understanding enzymes: Palmer T., Ellis Harwood ltd., 2001.
- 2. Enzyme structure and mechanism. Alan Fersht, Freeman & Co. 1997
- 3. Principles of enzymology for food sciences: Whitaker Marc Dekker 1972.
- 4. Principles of Biochemistry, White. A, Handler, P and Smith.
- 5. Biochemistry, Lehninger A.L.
- 6. Biochemistry, Lubert Stryer.
- 7. Review of physiological chemistry, Harold A. Harper.
- 8. Text of Biochemistry, West and Todd.
- 9. Metabolic pathways Greenberg.
- 10. Mitochondria, Munn.
- 11. Biochemistry, 2nd Edition, G. Zubay.

Expected out comes of course BCH-IV

- 1. The student will get knowledge in the different physiological systems and their functions in the human body. By studying blood, its composition and its functions the student will understand the importance of blood.
- 2. This course will also provide knowledge in hormones, their functions and the diseases occurring due to alterations in the levels of hormones.
- 3. By studying this course the student will know the nutritional importance of proteins, carbohydrates, lipids, vitamins and minerals.
- 4. Clinical biochemistry unit along with practicals will enable the student to do diagnostic tests for liver diseases,Gastro intestinal diseases,renal diseases and nutititional deficiencies.

Major Domain Subject: BIO-CHEMISTRY SEMESTER-IV Course: Physiology, Nutritional and Clinical Biochemistry Code: BCH-1V

60 HRS

12 hours

(5 periods/week)

Unit-I: Digestion and Blood

Digestion and absorption of carbohydrates, lipids and proteins. Role of enzymes and gastrointestinal hormones in digestion. Composition of blood, Blood groups, coagulation of blood and disorders of blood coagulation (haemophilia). Hemoglobin and transport of gases in blood (oxygen and CO₂). Types of anemias, haemoglobinopathies-sickle cell anemia.

Unit-II: Nervous system and excretory system

Introduction to nervous system, general organization of nervous system, Neurons-structure, types, properties and functions; Neurotransmitters, Cerebrospinal fluid-composition and functions, Reflex-types and properties.

Introduction to excretory system. Organisation of kidney, Structure and functions of nephron, Urine formation, Role of kidneys in maintaining acid-base and electrolyte balance in the body.

Unit III: Endocrinology

Endocrinology- organization of endocrine system. Classification of hormones. Outlines of chemistry, physiological role and disorders of hormones of thyroid, parathyroid, pituitary and hypothalamus. Introduction of gastrointestinal hormones. Mechanism of hormonal action- signal transduction pathways for glucocorticoids and insulin. Adrenalin, estrogen and progesterone.

Unit- IV: Nutritional Biochemistry

Balanced diet. Calorific values of foods and their determination by bomb calorimeter. BMR and factors affecting it. Specific dynamic action of foods. Energy requirements and recommended dietary allowance (RDA) for children, adults, pregnant and lactating women. Sources of complete and incomplete proteins. Biological value of proteins. Malnutrition- Kwashiorkar, Marasmus and PEM.

Vitamins- sources, structure, biochemical roles, deficiency disorders of water and fat soluble vitamins. Introduction to neutraceutical and functional foods. Bulk and trace elements-Ca, Mg, Fe, I, Cu, Mo, Zn, Se and F.

Unit- V: Clinical Biochemistry

12hours

12hours

12hours

12hours

Plasma proteins in health and disease. Liver diseases-jaundice. Liver function tests- conjugated and total bilurubin in serum, albumin: globulin ratio, Serum enzymes in liver diseases-SGOT, SGPT, GGT,CPK, Acid and alkaline phosphatases. Serum lipids and lipoproteins. Normal and abnormal constituents of urine. Renal function tests-Blood urea, creatinine, GFR, creatinine clearance. GTT and gastric and pancreatic function tests.

<u>Practical – BCH-401: Nutritional and Clinical Biochemistry</u> 45 HRS

3 periods/week)

(

List of Experiments:

- 1. Estimation of calcium by titrimetry
- 2. Estimation of iron by Wong's method.
- 3. Estimation of vitamin C by 2, 6 -dichlorophenol indophenol method.
- 4. Determination of iodine value of an oil.
- 5. Estimation of hemoglobin in blood.
- 6. Total count RBC and WBC. Differential count.
- 7. Determination of blood group and Rh typing.
- 8. Visualization of antigen antibody reactions (Ouchterlony technique).
- 9. Urine analysis for albumin, sugars and ketone bodies.
- 10. Estimation of urinary creatinine.
- 11. Estimation of blood Glucose.
- 12. Estimation of serum total cholesterol.

Recommended books:

- 1. Essentials of Food and Nutrition, Vol. I & II, M.S. Swaminathan.
- Text Book of Biochemistry with clinical correlations. Thomas M. Devlin (John Wily).
- 3. Harper's Review of Biochemistry, Murray et al (Longman).

- Biochemical aspects of human disease R.S. Elkeles and A.S. Tavil. (Blackwell Scientific Publications).
- Clinical chemistry in diagnosis and treatment–Joan F.Zilva and P.R.Pannall (Lloyd-Luke Medical Books, 1988).
- Varley's Practical clinical Biochemistry Ed. Alan W. Gowenlock (Heinemann Medical Books, London, 1988).
- Clinical diagnosis and management by Lab methods (John Bernard Henry, W.B. Salunders Company, 1984).
- 8. Clinical Biochemistry S.Ramakrishnan and Rajiswami.
- Chemical Biochemistry (Metabolic and clinical aspects) by W.J.Marshall & S.K.Bangert.
- 10. Text book of clinical Biochemistry by Tietz et al.

Expected outcomes of the course BCH-V

- Thiscoursewill enable the student to know various microbes such as bacteria, fungi and viruses , their structures and other properties and diseases caused by them. The student will also get knowledge in their commercial applications by making use of their beneficial effects such as fermentation in alcohol production, nitrogen fixation in agricultureetc.
- The student will also get knowledge in immune system, vaccines and also understand the pathogenesis of auto immune diseases and immune deficiency diseases.
- 3. This course will provide knowledge and expertise in molecular biology such as genes, their structureand importance. This will also enable the student to

know the applications of PCR in cloning and diagnosis of genetic and viral diseases.

 The practicals will provide the expertise to the student to work in microbiology laboratory, food and pharma industries, and biotech companies for production of vaccines and other life saving drugs.

Major Domain Subject: BIO-CHEMISTRY

Semester - IV

Course: Microbiology,Immunology and Molecular biology Code: BCH-V

0 H RS (5 pe rio ds/ we ek)

Unit-I: Microbiology12hours

Introduction to microbiology and microbial diversity. Classification of microorganisms- prokaryotic and eukaryotic microorganisms.Bacterial structure, growth curve and kinetics of growth. Introduction to viruses-plant and animal viruses, structure, life cycle, Food and dairy microbiology.

Unit-II: Nitrogen Fixation

12hours

Nitrogen cycle, Non-biological and biological nitrogen fixation, photosynthetic and non-photosynthetic systems, Nitrogenase system. Utilization of nitrate ion, Ammonia incorporation into organic compounds. Synthesis of glutamine and regulatory mechanism of glutamine synthase.

Unit-III: Applied Biochemistry12 hours

Fermentation Technology: Batch, continuous culture techniques, principle types of fermentors. Pasteur effect.Industrial production of chemicals- alcohol, acids (citric acid), solvents (acetone), antibiotics (penicillin), Enzyme Technology: Immobilization of enzymes and cells, industrial applications, enzymes in Bioremediation.

Unit- IV: Immunology12hours

Organs and cells of immune system. Innate and acquired immunity, Cell mediated (T-cells Classification and humoral immunity and B-cells). of immunoglobulins, structure of IgG. Epitopes / antigenic determinants. Concept of haptens. Adjuvants. Monoclonal antibodies.Antigen-antibody reactionsagglutination, immunoprecipitation, immunodiffusion. Blood groupantigens. Immunodiagnostics- ELISA. Vaccines and their classification. Traditional vaccinesliveand attenuated. Modern vaccines- recombinant and peptide vaccines. Outlines of hypersensitivityreactions.

Unit- IV: Molecular biology

12 hours

Types of RNA and DNA, DNA replication-leading and lagging strands, okazaki fragments, inhibitors of DNA replication. Genetic code, Protein synthesistranscription, translation, inhibitors of protein synthesis. Outlines of cloning technology, vectors, restriction enzymes, PCR, applications of cloning in agriculture, industry and medical fields.

Practical – BCP-501: Microbialogy and immunology 45 HRS

(

3 periods/week)

List of Practical Experiments

- 10. Biosafety and good laboratory practices (GLP) of Microbiology.
- 11. Sterilization of microbial media by autoclave.
- 12. Isolation of pure cultures: (i) Streak plate method. (ii) Serial dilution method.
- 13. Demonstration of alcohol fermentation.
- 14. Antibiotic sensitivity by paper disc method.
- 15. Effect of nitrogen sources on growth of E. coli
- 16. Immunodiffusion by Ouchterlony method.
- 17. Blood group analysis.
- 18. Isolation of DNA from plant tissues.
- 19. Spotters.

Recommended books:

1. Willey MJ, Sherwood, LM &Woolverton C J (2013) Prescott, Harley and Klein's

Microbiology by. 9th Ed., McGrawHill.

- Atlas RM. (1997). Principles of Microbiology. 2nd edition. WM.T.Brown Publishers.
- 3. Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw

Hill Book Company.

- 4. Fermentation Technology (2nd ed.) Standury (Pergman press)
- 5. Biotechnology: Textbook of Industrial microbiology 2nd Edit. By Crueger and

Crueger (2000).

- 6. Principles of Biochemistry, White. A, Handler, P and Smith.
- 7. Goldsby RA, Kindt TJ, Osborne BA. (2007). Kuby's Immunology. 6th edition

W.H. Freeman and Company, New York.

8. Richard C and Geiffrey S. (2009). Immunology. 6th edition. Wiley Blackwell

Publication.

9. Watson JD, Baker TA, Bell SP, Gann A, Levine M and Losick R (2008) Molecular

Biology of the Gene, 6th edition, Cold Spring Harbour Lab. Press, Pearson Publication.

10. Molecular biology by David Freifelder

ANDHRA UNIVERSITY:: VISAKHAPATNAM

Semester		Title of the paper		
Ι		Bio-molecules & Analytical Techniques		
II		Microbiology, Cell & Molecular Biology		
III		Immunology & r-DNA technology		
IV	i	Plant & Animal Biotechnology		
	ii	Environmental & Industrial Biotechnology		

B.Sc., Biotechnology Course Structure for the Academic year 2020-21

B.Sc., Biotechnology: Choice based credit system

B.Sc., I Semester W.E.F. 2020-21

BT-101: Bio-molecules & Analytical Techniques

Course Objectives:To ensure students gain knowledge about the structure, properties and functions of biomolecules and characterization of biomolecules using analytical techniques.

Unit-I-Carbohydrates, Protein and Lipids

Classification, structure, properties of carbohydrates. Classification, structure and properties of amino acids, peptide bond and peptides. Classification, structure (primary, secondary, tertiary, quaternary) and functions of proteins. Denaturation and renaturation of proteins. Classification structure and properties of saturated and unsaturated fatty acids. Structure and functions of glycolipids, phospholipids, and cholesterol.

Unit-II- Nucleic acid, Vitamins and Bioenergetics

Structure and functions of DNA and RNA. Source, structure, biological role and deficiency manifestation of vitamin A, B, C, D, E and K. Free energy, entropy, enthalpy and redox potential. High energy compounds, Glycolysis, TCA cycle, Electron-Transport System and Oxidative Phosphorylation.

Unit-III-Centrifugation, Chromatography and Electrophoresis

Basic principles of sedimentation and types of centrifugations. Principle, instrumentation and application of partition, absorption, paper, TLC, ion exchange, gel permeation, affinity chromatography. Introduction to HPLC, GCMS and LCMS. Basic principles and types of electrophoresis, factors affecting electrophoretic migration. PAGE (Native, SDS-PAGE). Introduction to 2D & Isoelectric Focusing.

Unit - IV-Spectroscopy, Microscopy and Laser Techniques

Beer-Lambert law, light absorption and transmission. Extinction coefficient, Design and application of photoelectric calorimeter and UV-visible spectrophotometer. Introduction to crystallography and application. Types and design of microscopes - compound, phase contrast, fluorescent electron microscopy (TEM, SEM). Introduction to radioisotopes, measurement of radioactivity (scintillation counter and autoradiography).

Unit –V- Biostatistics

Mean, median, mode, standard deviation, One-way Anova, Two-way Anova, t-test, F-test and chi-square.

List of Practicals:-

- 1. Introduction to basic instruments (Principle standard operation procedure) demonstration and record
- 2. Calculation of molarity, normality and molecular weight of compounds.
- 3. Qualitative analysis of carbohydrates (sugars)
- 4. Quantitative analysis of carbohydrates
- 5. Quantitative estimation of protein Lowery method
- 6. Estimation of DNA by diphenylamine reagent
- 7. Estimation of RNA by orcinol reagent
- 8. Assay of protease activity
- 9. Preparation of starch from potato and its hydrolyze by salivary amylase
- 10. Preparation of standard buffer and pH determination
- 11. Separation of amino acids by paper chromatography
- 12. Separation of lipids of TLC
- 13. Agarose gel electrophoresis
- 14. Calculation of mean, median and mode

Textbooks for Biomolecules and Analytical Techniques

- 1. Outlines of Biochemistry, 5th Edition, (2009), Erice Conn & Paul Stumpf; John Wiley and Sons, USA
- 2. Principles of Biochemistry, 4th edition, (1997), Jeffory Zubey; McGraw-Hill College, USA
- 3. Principles of Biochemistry, 5th Edition (2008), Lehninger, David Nelson & Michael Cox; W.H. Freeman and Company, NY
- 4. Fundamentals of Biochemistry, 3rd Edition (2008), Donald Voet & Judith Voet; John Wiley and Sons, Inc. USA
- 5. Biochemistry, 7th Edition, (2012), Jeremy Berg & Lubert Stryer; W.H.Freeman and Company, NY
- 6. An Introduction to Practical Biochemistry, 3rd Edition, (2001), David Plummer; Tata McGraw Hill Edu. Pvt.Ltd. New Delhi, India
- 7. Biochemical Methods,1st Edition, (1995), S.Sadashivam, A.Manickam; New Age International Publishers, India
- 8. Textbook of Biochemistry with Clinical Correlations, 7th Edition, (2010), Thomas M. Devlin; John Wiley and Sons, USA
- 9. Proteins: biotechnology and biochemistry, 1st edition, (2001), Gary Walsch; Wiley, USA
- 10. Biochemical Calculations, 2nd Ed., (1997), Segel Irvin H; John Wiley and Sons, NY
- 11. Biophysical Chemistry Principles & Techniques Handbook, (2003), A. Upadhyay, K. Upadhyay, and N. Nath

- 12. Enzymes: Biochemistry, Biotechnology & Clinical chemistry, (2001), Palmer Trevor, Publisher: Horwood Pub. Co., England.
- 13. Analytical Biochemistry, 3rdedition, (1998), David Holmes, H.Peck, Prentice-Hall, UK
- 14. Introductory Biostatistics, 1st edition, (2003), Chap T. Le; John Wiley, USA.
- 15. Methods in Biostatistics, (2002), B. K. Mahajan –Jaypee Brothers.
- 16. Statistical methods in biology, (1995), Bailey, N. T.; Cambridge university press

B.Sc., Biotechnology: Choice based credit system

B.Sc., -II Semester W.E.F. 2020-21

BT-201: Microbiology, Cell and Molecular Biology

Course Objectives: To acquaint students with concepts of microbiology, cell and molecular biology. This course is aimed to give an understanding of the basics of microbiology, dealing types of microbes, classification and their characterization, structure and function of prokaryotic and eukaryotic cell organelles, cell division and basics of molecular biology including DNA replication, transcription, translation and regulation of gene expression.

Unit-I- Scope and Techniques of Microbiology

History and contribution of Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister and Alexander Fleming. Ultrastructure of bacteria and growth curve. Pure culture techniques. Sterilization techniques, principles and application of physical methods (autoclave, hot air oven, incineration), chemical methods and radiation methods. Simple, gram and acid-fast staining.

Unit-II-Microbial Taxonomy and Metabolism

Concepts of microbial species and strains. Classification of bacteria based on morphology, nutrition and environment. General characteristics, transmission and cultivation of viruses. Structure and properties of plant (tobacco mosaic virus, TMV), animal (Newcastle disease virus, NDV), human (Human immunodeficiency virus, HIV) and bacterial viruses (T4 phage). Emerging and reemerging viruses (dengue virus), zoonotic viruses (rabies, SARS-CoV-2). Microbial production of penicillin. Bacterial toxins, tuberculosis, typhoid. Introduction to fungi, algae and mycoplasm.

Unit-III- Cell Structure and Functions

Structure, properties and functions of cellular organelles (E.R, Golgibodies, Mitochondria, Ribosomes and Vacuoles) of eukaryotic cells. Cell cycle and cell division (mitosis and meiosis). Chemical composition and dynamic nature of the membrane, cell signaling and communication, endocytic pathways.

Unit-IV- DNA Replication, Repair and Regulation of Gene Expression

DNA replication in prokaryotes and eukaryotes (semiconservative, dispersive, conservative, uni and bi-direction, rolling circle). Mechanism of DNA replication, enzymes and protein involved in DNA replication. DNA damage and repair. Regulation of gene expression in prokaryotes Lac and Trip operon concept.

Unit – V - Central Dogma of Molecular Biology

Genome organization of prokaryotic and eukaryotic organisms. Genetic code, prokaryotic and eukaryotic transcription, enzymes involved in transcription. Post-transcriptional modification (Capping Poly adenylation) and splicing.

Translation: mechanism of translation in prokaryotic and eukaryotic cells (initiation, elongation, termination). Post-translational modification (glycosylation and phosphorylation).

List of Practicals:-

- 1. Cleaning and preparation of glassware
- 2. Preparation of nutrient agar medium for bacteria
- 3. Preparation of PDA medium for fungi
- 4. Sterilization techniques (autoclave, hot air oven, filter)
- 5. Isolation of bacteria from soil
- 6. Simple staining technique
- 7. Differential staining technique
- 8. Microbial counting by Haemocytometer
- 9. Identification of different bacteria
- 10. Motility test by hanging drop
- 11. Biochemical identification of bacteria
- 12. Preparation of pure culture by slab, slant, streak culture
- 13. Study of stages of mitotic cell division
- 14. Study of stages of meiotic cell division
- 15. Isolation of chloroplast
- 16. Extraction and isolation of DNA from bacteria.

Textbooks for Microbiology, Cell and Molecular Biology

- 1. Microbiology–6th Edition, (2006), Pelczar M.J., Chan E.C.S., Krieg N.R.; The McGrawHill Companies Inc. NY
- Prescott's Microbiology, 8th edition, (2010), Joanne M Willey, Joanne Willey, Linda Sherwood, Linda M Sherwood, Christopher J Woolverton, Chris Woolverton; McGrawHill Science Engineering, USA
- 3. Textbook of Microbiology, Anantnarayan and Paniker (2017)
- 4. Brock biology of microorganisms, 2003, Brock, T. D., Madigan, M. T., Martinko, J. M., & Parker, J.; Upper Saddle River (NJ): Prentice-Hall, 2003.

- 5. Genes XI, 11th edition, (2012), Benjamin Lewin; Publisher Jones and Barlett Inc. USA
- 6. Molecular Biology of the Gene, 6th Edition, (2008), James D. Watson, J. D., Baker T.A., Bell, S. P., Gann, A., Levine, M., and Losick, R.; Cold Spring Harbour Lab. Press, Pearson Pub.
- 7. Molecular Biology, 5th Edition, (2011), Weaver R.; McGraw Hill Science. USA
- 8. Fundamentals of Molecular Biology, (2009), Pal J.K. and Saroj Ghaskadbi; Oxford University Press.
- 9. Molecular Biology: Genes to Proteins, 4th edition (2011), Burton E Tropp Jones& Bartlett Learning, USA.
- Cell and Molecular Biology: Concepts and Experiments, 6th Edition, Karp, G. 2010.; John Wiley & Sons. Inc.
- 11. Cell and Molecular Biology, 8th edition. De Robertis, E.D.P. and De Robertis, E.M.F. 2006; Lippincott Williams and Wilkins, Philadelphia.
- 12. Cell Biology, (2017), De Robertis & De Roberis, Blaze Publishers & Distributors Pvt. Ltd.
- 13. The Cell: A Molecular Approach. 5th edition. Cooper, G.M. and Hausman, R.E. 2009. ASMPress & Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 14. The World of the Cell, 7thedition, Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009 Pearson Benjamin Cummings Publishing, San Francisco.
- 15. David A. Thompson. 2011. Cell and Molecular Biology Lab. Manual.
- 16. P.Gunasekaran. 2007. Laboratory Manual in Microbiology. New Age International.
- 17. D O Hall, S E Hawkins. 1974. Laboratory Manual of Cell Biology. British Society for Cell Biology, Published by Crane, Russia.
- 18. Mary L. Ledbetter. 1993. Cell Biology: Laboratory Manual. Edition: 2. Published by Ron Jon Publishing. Incorporated.
- 19. Gunasekaran, P. 2009. Laboratory Manual in Microbiology. 1st Edition. New Age International Publishers.
- 20. Dr. T. Sundararaj. Microbiology Laboratory Manual. 2005. Dr.A.L. MPGIBMS, University of Madras, Taramani, Chennai 600 113.
- 21. James G. Cappuccino and Natalie Sherman. 2013. Microbiology: A Laboratory Manual. 10th Edition. Benjamin Cummings.
- 22. Dr. David A Thompson. 2011. Cell and Molecular Biology Lab Manual.
- 23. George M. Malacinski. 2013. Freifeder's Essentials of Molecular Biology. Narosa Publishing House.

B.Sc., Biotechnology: Choice based credit system B.Sc., -III- Semester W.E.F. 2020-21

BT-301: Immunology and rDNA technology

Course Objectives: To acquaint students with concepts of immunology and recombinant DNA technology. This course is aimed to give an understanding of the basics of immunology dealing cells and organs of the immune system, types of immune responses, antigen-antibody interactions, vaccines and tools, techniques and strategies and applications of genetic engineering.

Unit- I – Concepts, Cells and Organs of the Immune System

Terminology, antigen, hapten, antibody (types), antigenicity, immunogenicity and types of immunity. Innate and adaptive immunity. Hematopoiesis, organs, tissues, cells and mediators of the immune system (primary and secondary lymphoid organs, lymphocytes and cytokines). Introduction to complement components, MHC. Basic concepts of humoraland cell-mediated immune response.

Unit-II-Vaccinology and Clinical Immunology

Live, killed, attenuated, subunit and recombinant vaccines. Role and properties of adjuvants. Hybridoma technology, monoclonal antibodies and their application in immunodiagnosis. Antigen and antibody interactions - precipitation, agglutination, immune diffusion and ELISA. Introduction to hypersensitivity and autoimmunity.

Unit-III –Introduction, Tools and Techniques of rDNA Technology

Introduction to rDNA technology, steps involved in cloning, tools of genetic engineering (Genes, Cloning vectors - plasmids and cosmids, Enzymes – restriction endonucleases and DNA Ligase, Hosts – bacteria and yeast). Principles and application of PCR. Southern, Northern and Western Blotting. Introduction to DNA sequencing (Sanger Sequencing) and Site-directed Mutagenesis.

Unit-IV-Cloning Strategies and Application of rDNA Technology

cDNA library, construction, methods of transformation, recombinant selection and screening methods. Applications of rDNA technology in agriculture (transgenic plants, edible vaccines and antibodies) and medicine (disease diagnosis and DNA fingerprinting).

Unit-V-Bioinformatics

Databases (PubMed, NCBI, EMBL and ExPASy), nucleotide and protein BLAST analysis, CLustal W and phylogenetic tree construction. Introduction to omics (proteomics, genomics and transcriptomics). Introduction to nanotechnology.

List of Practicals:-

- 1. Determination of Blood Groups
- 2. Pregnancy test
- 3. Widal test
- 4. Ocuteroloney immunodiffusion
- 5. Radial immune diffusion
- 6. ELISA
- 7. Production of antibodies (theory exercise)
- 8. Bleeding, separation of serum and storage
- 9. Lymphoid organs (theory exercise)
- 10. Isolation of plasmid DNA (alkaline lysis method)
- 11. Analysis of plasmid DNA by Agarose gel electrophoresis
- 12. Southern blotting (theory exercise)
- 13. PCR Amplification (theory exercise)

Textbooks for Immunology and rDNA technology

- Kuby immunology, Judy Owen, Jenni Punt, Sharon Stranford., 7th edition (2012), Freeman and Co., NY
- 2. Textbook of basic and clinical immunology, 1st edition (2013), Sudha Gangal and Shubhangi Sontakke, University Press, India
- Immunology, 7th edition (2006), David Male, Jonathan Brostoff, David Roth, Ivan Roitt, Mosby, USA.
- 4. Immuno diagnostics, 1996, By S.C. Rastogi, Publ: New Age
- 5. Introduction to Immunology- 2002, C. V. Rao- Narosa Publishing House
- 6. Textbook of Biotechnology 2007, By H.K. Das (Wiley Publications)
- Principles of Gene Manipulation 7th edition, 2006, By R.W. Old & S.B. Primrose, Publ: Blackwell
- 8. Molecular Biology & Biotechnology- 1996, By H.D. Kumar, Publ: Vikas
- Molecular Biotechnology 4th edition, 2010, G.R. Click and J.J. Pasternak, Publ: Panima

- 10. Genes and Genomes 1991, By Maxine Singer and Paul Berg
- 11. Genes VII- 2000, By B. Lewin Oxford Univ. Press
- Molecular Biology 4th Edition, 2008, By D. Freifelder, Publ: Narosa Publishing house New York, Delhi
- Brown TA. (2006). Gene Cloning and DNA Analysis. 5th edition. Blackwell Publishing, Oxford, U.K.
- Clark DP and Pazdernik NJ. (2009). Biotechnology-Applying the Genetic Revolution. Elsevier Academic Press, USA.
- Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington
- Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7thedition. Blackwell Publishing, Oxford, U.K.
- Sambrook J, Fritsch EF and Maniatis T. (2001). Molecular Cloning-A Laboratory Manual. 3rdedition. Cold Spring Harbor Laboratory Press.
- 18. Introduction to Bioinformatics 2007, By V. Kothekar
- 19. Introduction to Bioinformatics 2013, By Arthur M. Lesk
- 20. Bioinformatics: 2001, Sequence and Genome Analysis by David W. Mount, Cold Spring Harbor Laboratory Press
- 21. Biological Sequence Analysis: 1st Edition, 1998, Probabilistic Models of Proteins and Nucleic Acids by Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison, Cambridge University Press
- Bioinformatics: 2004, A Practical Guide to the Analysis of Genes and Proteins, Andreas D. Baxevanis, B. F. Francis Ouellette, Wiley-Interscience
- 23. Bioinformatics tools and Resources free online tools, software packages,Bioinformatics books and Journals, Bioinformatics web-portals

B.Sc., Biotechnology: Choice based credit system

B.Sc., -IV Semester W.E.F. 2020-21

BT-401 (i) Plant and Animal Biotechnology

Course Objectives

The objectives of this course are to introduce students to the principles, practices and application of animal biotechnology, plant tissue culture, plant and animal genomics, genetic transformation.

Unit – I

Plant tissue culture techniques & secondary metabolites production

Plant tissue culture: totipotency, media preparation – nutrients and plant hormones; sterilization techniques; establishment of cultures – callus culture, cell suspension culture ,applications of tissue culture-micro propagation; Somatic embryogenesis; synthetic seed production; protoplast culture and somatic hybridization - applications. Cryopreservation,Plant secondary metabolites- concept and their importance

Unit – II

Transgenesis and Molecular markers

Plant transformation technology-- Agrobacterium mediated Gene transfer (Ti plasmid), hairy root features of Ri plasmid, Transgenic plants as bioreactors. Herbicide resistance – glyphosphate, Insect resistance- Bt cotton,, **Molecular markers - RAPD, RFLP and DNA fingerprinting-principles and applications.**

Unit – III

Animal tissue culture techniques

Animal cell culture: cell culture media and reagents; culture of mammalian cells, tissues and organs; primary culture, secondary culture, cell lines, stem cell cultures; Tests: cell viability and cytotoxicity, Cryopreservation. Transfection methods (calcium phosphate precipitation, electroporation, Microinjection) and applications.

Unit – IV

Transgenic animals & Gene Therapy

Production of vaccines, diagnostics, hormones and other recombinant DNA products in medicine (insulin,somatostatin, vaccines),IVF, Concept of Gene therapy, Concept of transgenic animals – Merits and demerits -Ethical issues in animal biotechnology

Unit V

Bioethics, Biosafety and IPR

Bioethics in cloning and stem cell research, Human and animal experimentation, animal rights/welfare. Bio safety-introduction to biological safety cabinets; primary containment for biohazards; biosafety levels; GLP,GMP, Introduction to IP-Types of IP: patents, trademarks & copyright

Student Learning Outcomes

Students should be able to gain fundamental knowledge in animal and plant biotechnology and their applications.

PLANT AND ANIMAL BIOTECHNOLOGY-PRACTICALS

- > plant culture media and composition of MS media
 - Raising of aseptic seedlings
 - Induction of callus from different explants
 - Plant propagation through Tissue culture (shoot tip and Nodal culture)
- Establishing a plant cell culture (both in solid and liquid media)
- suspension cell culture
- Cell count by hemocytometer.
- > Establishing primary cell culture of chicken embryo fibroblasts.
- Animal tissue culture maintenance of established cell lines.
- Animal tissue culture virus cultivation.
- Estimation of cell viability by dye exclusion (Trypan blue).
- ELISA Demonstration

List of Reference Books ;

- 1. Introduction to Plant Tissue Culture ... M.K. Razdan ,2003, Science Publishers
- 2.Plant Tissue Culture, kalyan Kumar De, 199 M7, New Central Book Agency
- 3. Plant Tissue Culture : Theory and Practice By S.S. Bhojwani and A. Razdan, 1998
- 4. Biotechnology By U. Satyanarayana ;1997
- 5. Plant Cell, Tissue and Organ Culture, Applied and Fundamental Aspects By Y.P.S. Bajaj and A. Reinhard ,2001
- 6. Introduction to Plant Tissue Culture, M. K. Razdan, 2003, Science Publishers
- 7. A Textbook of Biotechnology, R C Dubey, S. 2014, Chand Publishing
- 8. Elements of Biotechnology, P. K. Gupta, 1994, Rastogi Publications
- R. Ian Freshney, "Culture of animal cells A manual of basic techniques" 4th edition, John Wiley & Sons, 2000 ,Inc, publication, New York
- Daniel R. Marshak, Richard L. Gardner, David Gottllieb "Stem cell Biology" edited by Daniel 2001,Cold Spring Harbour Laboratory press, New York
- 11. M.M. Ranga, Animal Biotechnology; Agrobios (India) ,2006.

B.Sc., Biotechnology: Choice based credit system

B.Sc., -IV Semester W.E.F. 2020-21

BT-401 (ii) Environmental & Industrial Biotechnology

Learning Objective

This course aims to introduce fundamentals of Environmental Biotechnology. The course will also give an insight in introducing major groups of microorganisms and their industrial applications

Unit – I

Pollution Types and Control

Environmental Biotechnology-Environmental Pollution : Types of pollution, air pollution & its control through Biotechnology, Biofilters, Bioscrubbers, Biotrickling filter.Water pollution and its management: Measurement of water, pollution, sources of water pollution. Microbiology of waste water treatment, aerobic processes, activated sludge, oxidation ponds, trickling filters, and rotating biological contactors. Anaerobic processes: Anaerobic digesters, upward flow anaerobic sludge blanket reactors.

UNIT-II

Bioremediation

Biodegradation and Bioremediation – Concepts & principles of Bioremediation ,Bioremediation of Hydrocarbons and its applications Degradation of pesticides and other toxic chemicals by microorganism.Role of genetically Engineered microbes, Concept of Phytoremediation, environmental safety guidelines.

UNIT III

Biofuels

Bio fuels-biogas, microbial groups involved in biogas production & interactions, factors affecting biogas production, Biofertilizers, Vermiculture.

Unit IV

Basic principles of Microbial technology

Industrially important microbes, its screening, selection and identification. Maintenance and preservation of industrially important microbial cultures. Strain Improvement, Basic concepts of fermentation; Design of fermenter and applications

Unit V

Commercial Production of Microbial products

Microbial technology products and applications; Microbial production of Organic acids (Lactic acid, citric acid), Amino acids (Glutamicacid, Aspartic acid and Lysine). Fermentation by microbes for food additives: dairy products (Cheese, Yogurt), beverages (Beer, Wine) and antibiotics (Streptomycin, Pencillin)

Student Learning Outcomes Students should be able to gain fundamental knowledge in animal and plant biotechnology and their applications.

ENVIRONMENTAL AND INDUSTRIAL BIOTECHNOLOGY -PRACTICALS

- > Detection of coliforms for determination of the purity of potable water.
- Determination of total dissolved solids of water
- > Determination of Hardness and alkalinity of water sample.
- Determination of dissolved oxygen concentration of water sample
- Determination of biological oxygen demand of sewage sample
- > Determination of chemical oxygen demand (COD) of sewage sample.
- > Isolation of industrially important microorganisms from soil.
- Isolation of amylase producing organisms from soil.
- > Production of α amylase from Bacillus Spp. by shake flask culture.
- Production of alcohol or wine using different substrates.
- Estimation of citric acid by titrimetry.

List of reference books;

- 1. K. Vijaya Ramesh, Environmental Microbiology, 2004, MJP Publishers, Chennai.
- 2. A.G. Murugesan, C. Raja Kumari, Environmental Science & Biotechnology Theory & Techniques, 2005, MJP Publishers
- 3. Environmental microbiology by Raina M.Maier Ian L.Pepper & Charles P.Gerba,2000,Academic press
- 4. Environmental Chemistry, A.K. De. Wiley Eastern Ltd., 2001, New Delhi
- 5. Introduction of Biodeterioration, D. Allsopp and K.J. Seal, ELBS/Edward Arnold,2008
- 6. Power un seen: How microbes rule the world. By Dixon, B. Freeman/ Spectrum, 1994,Oxford.
- 7. Environmental Microbiology. By. Mitchell. R. Wiley, 1992, New York
- 8. Introduction to Environmental Sciences, Y. Anjaneyulu ,2004, BS Publications
- 9. Industrial Microbiology by A.H.Patel,2009
- 10. Prescott & Dum (2002) Industrial Micrbiology, Agrabios (India) ,2005,Publishers
- Creueger W. & Crueger A.A Text of Industrial Microbiology,2000, 2nd Edition, Panima Publishers corp.

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar,6th Battalion Road, Atmakur (V), Mangalagiri (M), Guntur-522 503, Andhra Pradesh
 Web: www.apsche.org Email: acapsche@gmail.com

REVISED SYLLABUS OF B.Sc (Chemistry) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-2021

PROGRAMME: THREE-YEAR B.Sc. (B.Sc Chemistry)

 (With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.)
 For Fifteen Courses of 1, 2, 3 & 4 Semesters)
 (To be Implemented from 2020-21 Academic Year) Andhra Pradesh State Council of Higher Education

B.Sc. Chemistry Revised Syllabus under CBCS w.e.f. 2020-21

Structure of Chemistry Core Syllabus under CBCS

YEAR	SEMESTER	COURSE	TITLE	MARKS	CREDITS
	Ι	Ι	Inorganic and Physical Chemistry	100	03
Ι			Practical – I Analysis of SALT MIXTURE	50	02
	II	II	Organic and General Chemistry	100	03
			Practical – IIVolumetric Analysis	50	02
Π	III	III	Organic Chemistry and Spectroscopy	100	03
			Practical – IIIOrganic preparations and IR Spectral Analysis	50	02
	IV	IV	Inorganic, Organic and Physical Chemistry	100	03
			Practical – IVOrganic Qualitative analysis	50	02
			Inorganic and Physical Chemistry	100	02
		V	Practical-V Course Conductometric and Potentiometric Titrimetry	50	02

<u>SEMESTER – I</u>

Course I (Inorganic & Physical Chemistry) 60 hrs. (4h/w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand the basic concepts of p-block elements
- 2. Explain the difference between solid, liquid and gases interms of intermolecular interactions.
- 3. Applytheconceptsofgasequations,pHandelectrolyteswhilestudyingotherchemistrycour ses.

INORGANIC CHEMISTRY 24 h

UNIT –I

Chemistry of p-block elements

Group 13: Preparation & structure of Diborane, Borazine

Group 14: Preparation, classification and uses of silicones

Group 15: Preparation & structures of Phosphonitrilic halides $\{(PNCl_2)_n where n=3, 4\}$

Group 16: Oxides and Oxoacids of Sulphur (structures only)

Group 17: Pseudohalogens, Structures of Interhalogen compounds.

UNIT-II

1. Chemistry of d-block elements:

Characteristics of d-block elements with special reference to electronic configuration, variable valence, magnetic properties, catalytic properties and ability to form complexes. Stability of various oxidation states.

2. Chemistry of f-block elements:

Chemistry of lanthanides - electronic structure, oxidation states, lanthanide contraction, consequences of lanthanide contraction, magnetic properties. Chemistry of actinides - electronic configuration, oxidation states, actinide contraction, comparison of lanthanides and actinides.

3. Theories of bonding in metals:

3

4h

8h

6h

6h

Valence bond theory and Free electron theory, explanation of thermal and electrical conductivity of metals based on these theories, Band theory- formation of bands, explanation of conductors, semiconductors and insulators.

PHYSICAL CHEMISTRY

UNIT-III

Solidstate

Symmetry in crystals. Law of constancy of interfacial angles. The law of rationality of indices. The law of symmetry. Miller indices, Definition of lattice point, space lattice, unit cell. Bravais lattices and crystal systems. X-ray diffraction and crystal structure. Bragg's law. Powder method. Defects in crystals. Stoichiometric and non-stoichiometric defects.

UNIT-IV

1. Gaseous state

van der Waal's equation of state. Andrew's isotherms of carbon dioxide, continuity of state. Critical phenomena. Relationship between critical constants and vander Waal's constants. Lawof corresponding states. Joule- Thomson effect. Inversion temperature.

2.Liquid state

Liquid crystals,mesomorphicstate. Differences between liquid crystal and solid/liquid. Classification of liquid crystals into Smectic and Nematic. Application of liquid crystals as LCD devices.

UNIT-V

Solutions, Ionic equilibrium& dilute solutions

1. Solutions

Azeotropes-HCl-H₂O system and ethanol-water system. Partially miscible liquids-phenolwater system. Critical solution temperature (CST), Effect of impurity on consulate temperature. Immiscible liquids and steam distillation.Nernst distribution law. Calculation of the partition coefficient. Applications of distribution law.

2. Ionic equilibrium

Ionic product, common ion effect, solubility and solubility product. Calculations based on solubility product.

3. Dilute solutions

Colligative properties- RLVP, Osmotic pressure, Elevation in boing point and depression in freezing point. Experimental methods for the determination of molar mass of a non-volatile

10h

36h

4h

6h

3h

7h

6h

4

solute using osmotic pressure, Elevation in boing point and depression in freezing point. Abnormal colligative properties. Van't Hoff factor.

Co-curricular activities and Assessment Methods

- 1. ContinuousEvaluation:Monitoringtheprogressof student'slearning
- 2. ClassTests,WorksheetsandQuizzes
- 3. Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality
- 4. Semester-

endExamination:criticalindicatorofstudent'slearningandteachingmethodsadoptedby teachersthroughoutthesemester.

List of Reference Books

- 1. Principles of physical chemistry by Prutton and Marron
- 2. Solid State Chemistry and its applications by Anthony R. West
- 3. Text book of physical chemistry by K L Kapoor
- 4. Text book of physical chemistry by S Glasstone
- 5. Advanced physical chemistry by Bahl and Tuli
- 6. Inorganic Chemistry by J.E.Huheey
- 7. Basic Inorganic Chemistry by Cotton and Wilkinson
- 8. A textbook of qualitative inorganic analysis by A.I. Vogel
- 9. Atkins, P.W.&Paula, J.deAtkin's Physical Chemistry Ed., Oxford University Press 10th Ed(2014).
- 10. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 11. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP (2009).
- 12. Barrow, G.M. Physical Chemistry

LABORATORY COURSE -I

Practical-I Analysis of SALT MIXTURE

(At the end of Semester-I)

Qualitative inorganic analysis (Minimum of Six mixtures should be analysed) 50 M

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand the basic concepts of qualitative analysis of inorganic mixture
- 2. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- **3.** Apply the concepts of common ion effect, solubility product and concepts related to qualitative analysis

Analysis of SALT MIXTURE

Analysis of mixture salt containing two anions and two cations (From two different groups) from the following:

Anions: Carbonate, Sulphate, Chloride, Bromide, Acetate, Nitrate, Borate, Phosphate.

Cations: Lead, Copper, Iron, Aluminium, Zinc, Nickel, Manganese, Calcium, Strontium, Barium, Potassium and Ammonium.

MODEL PAPER FIRST YEAR B.Sc., DEGREE EXAMINATION SEMESTER-I CHEMISTRY Course-I: INORGANIC & PHYSICAL CHEMISTRY

Time: 3 hours

PART- A5 X 5 = 25 Marks

Answer any **FIVE** of the following questions. Each carries **FIVE** marks

- 1. Explain the preparation & structures of Phosphonitrilic compounds.
- 2. Explain in brief, catalytic properties & stability of various oxidation states of dblock elements.
- 3. Write short note on Bravais lattices and crystal systems.
- 4. What are Smectic&Nematic liquid Crystals? Explain.

50 M

Maximum Marks: 75

30hrs (2 h / w)

- 5. Write account on Common ion effect & Solubility product.
- 6. Describe Andrew's isotherms of carbon dioxide.
- 7. Explain Actinide Constraction.
- 8. Explain the structure of Borazine.

PART- B5 X 10 = 50 Marks

Answer ALL the questions. Each carries TEN marks

9 (a). Explain Classification, Preparations & uses of Silicones

(or)

- (b). (i) What are Pseudohalogens.(ii) Explain the Structures of any one AX3& AX5interhalogen compounds.
- 10 (a). What is Lanthanide Contraction? Explain the Consequences of Lanthanide Contraction.

(or)

- (b). (i) Explain the magnetic properties of d- block elements.(ii) Explain about Conductors, Semi-Conductors& Insulators using Band Theory.
- 11.(a). Write an essay on Crystal defects.

(or)

- (b). What is Bragg's Law. Explain the determination of structure of a crystal by powder method.
- 12.(a). Derive the relationship between Critical constants &Vanderwaal constants

(or)

- (b). (i) Write any 5 differences between liquid crystals & liquids, solids(ii) Write the applications of Liquid crystals.
- 13.(a). Explain Nernst distribution Law. Explain its applications

(or)

(b). What are colligative properties. Write experimental methods for determination of molar mass of a non-volatile solute by using Elevation in boiling point & depression in freezing point.

<u>SEMESTER – II</u>

Course II – (Organic & General Chemistry) 60 hrs (4h/w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understandandexplainthedifferentialbehaviorof organiccompoundsbasedonfundamental conceptslearnt.
- 2. Formulatethemechanismoforganicreactionsby recallingandcorrelatingthefundamentalproperties of thereactants involved.
- 3. LearnandidentifymanyorganicreactionmechanismsincludingFreeRadical Substitution, Electrophilic AdditionandElectrophilicAromaticSubstitution.
- 4. Correlateanddescribethestereochemicalpropertiesoforganiccompounds and reactions.

ORGANIC CHEMISTRY

UNIT-I

RecapitulationofBasicsofOrganicChemistry

Carbon-Carbon sigma bonds (Alkanes and Cycloalkanes)

General methods of preparation of alkanes- Wurtz and WurtzFittig reaction, Corey House synthesis, physical and chemical properties of alkanes, Isomerism and its effect on properties, Free radical substitutions; Halogenation, concept of relative reactivity v/s selectivity. Conformational analysis of alkanes (Conformations, relative stability and energy diagrams of Ethane, Propane and butane).General molecular formulae of cycloalkanes and relative stability, Baeyer strain theory, Cyclohexane conformations with energy diagram, Conformations of monosubstituted cyclohexane.

UNIT-II

Carbon-CarbonpiBonds(AlkenesandAlkynes)

Generalmethodsofpreparation, physical and	chemicalprop	erties.Mechanism
of E1, E2, E1 cbreactions, Saytzeff and Hoff manneliminations,		Electrophilic
Additions, mechanism (Markownik off/Antimarkownik off	additio	n) with
suitableexamples,, <i>syn</i> and <i>anti</i> -addition;additionofH ₂ ,X ₂ ,	HX.	oxymercuration-

36h

12h

12h

demercuration, hydroboration-oxidation, ozonolysis, hydroxylation, Diels Alderreaction, 1, 2and 1, 4-addition reactions in conjugated dienes.

Reactionsofalkynes; acidity, electrophilic and nucleophilic additions, hydration to form carbonyl compounds, Alkylation of terminal alkynes.

UNIT-III

Benzene and its reactivity

Concept of aromaticity, Huckel's rule - application to Benzenoid (Benzene, Naphthalene) and Non - Benzenoid compounds (cyclopropenylcation, cyclopentadienyl anion and tropyliumcation)

Reactions - General mechanism of electrophilic aromatic substitution, mechanism of nitration, Friedel- Craft's alkylation and acylation. Orientation of aromatic substitution - ortho, para and meta directing groups. Ring activating and deactivating groups with examples (Electronic interpretation of various groups like NO₂ and Phenolic). Orientation of (i) Amino, methoxy and methyl groups (ii) Carboxy, nitro, nitrile, carbonyl and sulphonic acid groups (iii) Halogens

(Explanation by taking minimum of one example from each type)

GENERAL CHEMISTRY

UNIT-IV

1. Surface chemistry and chemical bonding

Surface chemistry

Colloids- Coagulation of colloids- Hardy-Schulze rule. Stability of colloids, Protection of Colloids, Gold number.

Adsorption-Physical and chemical adsorption, Langmuir adsorption isotherm, applications of adsorption.

2. Chemical Bonding

Valence bond theory, hybridization, VB theory as applied toClF₃,Ni(CO)₄, Molecular orbital theory -LCAO method, construction of M.O. diagrams for homo-nuclear and hetero-nuclear diatomic molecules (N₂, O₂, CO and NO).

24 h

12h

6h

6h

3. HSAB

Pearson's concept, HSAB principle & its importance, bonding in Hard-Hard and Soft-Soft combinations.

UNIT-V

Stereochemistry of carbon compounds

Molecular representations- Wedge, Fischer, Newman and Saw-Horse formulae.

Optical isomerism: Optical activity- wave nature of light, plane polarised light, optical rotation and specific rotation.

Chiral molecules- definition and criteria(Symmetry elements)- Definition of enantiomers and diastereomers – Explanation of optical isomerism with examples- Glyceraldehyde, Lactic acid, Alanine, Tartaric acid, 2,3-dibromopentane.

D,L, R,S and E,Z- configuration with examples.

Definition of Racemic mixture – Resolution of racemic mixtures (any 3 techniques)

Co-curricular activities and Assessment Methods

ContinuousEvaluation:Monitoringtheprogressof student'slearning

ClassTests,WorksheetsandQuizzes

Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality

Semester-endExamination:criticalindicatorofstudent'slearningandteachingmethodsadoptedby teachersthroughoutthesemester.

List of Reference Books

Theory:

Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (PearsonEducation).

Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: London, 1994.

Kalsi, P. S. Stereochemistry Conformation and Mechanism; New Age International, 2005. **Practical:**

10h

Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).

Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press (2000).

Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012)

Additional Resources:

Solomons, T. W. G.; Fryhle, C. B. & Snyder, S. A. Organic Chemistry, 12th Edition, Wiley. Bruice, P. Y. Organic Chemistry, Eighth Edition, Pearson.

Clayden, J.; Greeves, N.&Warren, S. Organic Chemistry, Oxford.

Nasipuri, D. Stereochemistry of Organic Compounds: Principles and Applications, Third Edition, NewAge International.

Gunstone, F. D. Guidebook to Stereochemistry, Prentice Hall Press, 1975.

LABORATORY COURSE-II **30**hrs (2 h / w) **Practical-II Volumetric Analysis**

(At the end of Semester-II)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. Understandandexplainthevolumetric analysisbasedonfundamental conceptslearnt in ionic equilibria
- 3. Learnandidentifythe concepts of a standard solutions, primary and secondary standards
- 4. Facilitate the learner to make solutions of various molar concentrations. This may include: The concept of the mole; Converting moles to grams; Converting grams to moles; Defining concentration; Dilution of Solutions; Making different molar concentrations.

Volumetric analysis

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.

2. Determination of Fe (II) using KMnO₄ with oxalic acid as primary standard.

50 M

3. Determination of Cu (II) using Na₂S₂O₃ with K₂Cr₂O₇ as primary standard.

4. Estimation of water of crystallization in Mohr's salt by titrating with KMnO4

MODEL PAPER FIRST YEAR B.Sc., DEGREE EXAMINATION SEMESTER-II CHEMISTRY COURSE -II: ORGANIC & GENERAL CHEMISTRY

Time: 3 hours

PART- A

Maximum Marks: 75 5 X 5 = 25 Marks

Answer any **FIVE** of the following questions. Each carries **FIVE** marks

- 1. Write different conformations of n-butane. Explain their relative stability..
- 2. Explain 1,2- & 1,4- addition reactions of conjugated dienes.
- 3. Explain the orientation effect of halogens on mono substituted benzene.
- 4. Explain the mechanism of E1^{CB} elimination reaction.
- 5. Explain the structure of ClF₃ by Valency Bond theory.
- 6. What are Hard & soft acids & bases? Explain with examples.
- 7. Draw the Wedge, Fischer, Newmann& saw-Horse representations for Tartaric acid.
- 8. Define Enantiomers and Diastereomers and give two examples for each.

PART-B

5 X 10 = 50 Marks

Answer ALL the questions. Each carries TEN marks

9 (a). (i) Write the preparation of alkanes by Wurtz and Corey-House reaction.
(ii) Explain Halogenation of alkanes. Explain the reactivity and selectivity in free radical substitutions.

(or)

- (b). (i) Explain Baeyer Strain Theory(ii) Draw the conformations of Cyclohexane and explain their stability by drawing energy profile diagram.
- 10 (a). (i) Write any two methods of preparation of alkenes.(ii) Explain the mechanism of Markownikiff and Anti-Markownikoff addition of HBr to alkene.

- (b). (i) Explain the acidity of 1-alkynes
 - (ii) How will you prepare acetaldehyde and acetone from alkynes?
 - (iii) Write alkylation reaction of terminal alkne.
- 11.(a). Define Huckel rule of aromatic compounds. What are benzenoid and nonbenzenoid aromatic compounds? Give examples.

(or)

- (b). Explain the mechanisms of Nitration and Friedel-Craft's alkylation of Benzene.
- 12.(a). (i) Define Hardy-Schulze rule & Gold number.(ii) Differentiate Physisorption& Chemisorption. Explain Langmuir adsorption isotherm.

(or)

- (b). Construct the Molecular Orbital diagram for O₂ and NO and explain their bond order and magnetic property.
- 13.(a). Define racemic mixture. Explain any two techniques for resolution of racemic mixture.

(or)

- (b). (i) Define Optical activity and Specific rotation.
 - (ii) Draw the R- & S- isomers of Alanine, Glyceraldehyde.
 - (iii) Write the E- & Z- isomers of 2-butene.

SEMESTER - III

Course III (ORGANICCHEMISTRY&SPECTROSCOPY) 60hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understandpreparation, properties and reactions of haloalkanes, haloarenes and oxygen containing functional groups.
- 2. Usethesyntheticchemistrylearntinthiscoursetodofunctionalgroup transformations.
- 3. Toproposeplausiblemechanismsforanyrelevantreaction

ORGANIC CHEMISTRY

UNIT – I

1. ChemistryofHalogenatedHydrocarbons:

Alkylhalides:Methodsofpreparationandproperties,nucleophilicsubstitutionreactions– SN1,SN2andSNimechanismswithstereochemicalaspectsandeffectofsolventetc.;nucleophilics ubstitutionvs.elimination, Williamson's synthesis.

Arylhalides:Preparation(includingpreparationfromdiazoniumsalts)andproperties,nucleophilic aromatic substitution;SNAr,Benzynemechanism.

Relativereactivityofalkyl,allyl,benzyl,vinylandarylhalidestowardsnucleophilicsubstitut ionreactions.

2. Alcohols & Phenols

Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, BouvaeltBlanc Reduction; Oxidationofdiolsbyperiodicacidandleadtetra acetate,Pinacol-Pinacolonerearrangement;

Phenols:Preparationandproperties;Acidityandfactorseffectingit, Ringsubstitution reactions, Reimer–Tiemannand Kolbe's–Schmidt Reactions, Fries and Claisenrearrangements with mechanism;

UNIT-II

CarbonylCompounds

Structure, reactivity, preparation and properties;

Nucleophilicadditions,Nucleophilicaddition-eliminationreactionswithammoniaderivatives MechanismsofAldolandBenzoincondensation, Claisan-Schmidt, Perkin, CannizzaroandWittigreaction,Beckmannhaloformreactionand BaeyerVilligeroxidation,αsubstitutionreactions,oxidationsandreductions(Clemmensen, wolf –kishner, with LiAlH4 &NaBH4).

 $Addition reactions of \ \alpha, \beta \text{-unsaturated carbonyl compounds}: Michaeladdition.$

Activemethylenecompounds:

enoltautomerism.Preparationandsyntheticapplicationsofdiethyl

malonateandethylacetoacetate.

UNIT-III

CarboxylicAcidsand their Derivatives

6h

6h

10h

Keto-

14

12h

- 011

General methods of preparation, physical properties and reactions of monocarboxylic acids, effect of

substituentsonacidicstrength.Typicalreactionsofdicarboxylicacids,hydroxyacidsandunsaturat edacids.

Preparationandreactionsofacidchlorides, anhydrides, esters and amides;

Comparativestudyofnucleophilicsubstitutionatacylgroup-Mechanism

ofacidicandalkalinehydrolysisof esters,Claisencondensation,Reformatskyreactions and Curtiusrearrangement

Reactions involving H, OH and COOH groups- salt formation, anhydride formation, acid chloride formation, amide formation and esterification (mechanism). Degradation of carboxylic acids by Huns-Diecker reaction, decarboxylation by Schimdt reaction, Arndt-Eistert synthesis, halogenation by Hell- Volhard- Zelinsky reaction.

SPECTROSCOPY

UNIT-IV

MolecularSpectroscopy:

Interactionofelectromagneticradiationwithmoleculesandvarioustypesof spectra;

Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution.

Vibrationalspectroscopy: Classicalequationofvibration, computationofforceconstant, Harmonic and anharmonic oscillator, Morsepotential curve, vibrational degreesoffreedom forpolyatomic molecules, modesofvibration. Selection rules for vibrational transitions, Fundamentalfrequencies, overtones and hotbands.

Electronic spectroscopy: Energy levels of molecular orbitals (σ , π , n). Selection rules for electronic spectra. Types of electronic transitions in molecules, effect of conjugation. Concept of chromophore. bathochromic and hypsochromic shifts.Beer-Lambert's law and its limitations.

Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone.

15

26 h

18h

UNIT-V

Application of Spectroscopy to Simple Organic Molecules

Application of visible, ultraviolet and Infrared spectroscopy in organic molecules.

Application of electronic spectroscopy and Woodward rules for calculating λ_{max} of conjugated dienes and α,β – unsaturated compounds.

Infrared radiation and types of molecular vibrations, functional group and fingerprint region. IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of substitution on >C=O stretching absorptions).

Co-curricular activities and Assessment Methods

ContinuousEvaluation:Monitoringtheprogressof student'slearning

ClassTests,WorksheetsandQuizzes

Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality

Semester-endExamination:criticalindicatorofstudent'slearningandteachingmethodsadoptedby teachersthroughoutthesemester.

List of Reference Books

- 1. A Text Book of Organic Chemistry by Bahl and Arunbahl
- 2. A Text Book of Organic chemistry by I L FinarVol I
- 3. Organic chemistry by Bruice
- 4. Organic chemistry by Clayden
- 5. Spectroscopy by William Kemp
- 6. Spectroscopy by Pavia
- 7. Organic Spectroscopy by J. R. Dyer
- 8. Elementary organic spectroscopy by Y.R. Sharma
- 9. Spectroscopy by P.S.Kalsi
- Spectrometric Identification of Organic Compounds by Robert M Silverstein, Francis X Webster
- 11. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Furniss, B.S., Hannaford, A.J., Smith, P.W.G. &Tatchell, A.R. Practical Organic Chemistry, 5th Ed. Pearson (2012)

13. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).

LABORATORY COURSE -III

30hrs (2 h / w)

Practical Course-IIIOrganic preparations and IR Spectral Analysis

(At the end of Semester- III)

Course outcomes:

Onthecompletionofthecourse, the student will be able to do the following:

- 1. how to use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. how to calculate limiting reagent, theoretical yield, and percent yield
- 3. how to engage in safe laboratory practices by handling laboratory glassware, equipment, and chemical reagents appropriately
- 4. how to dispose of chemicals in a safe and responsible manner
- 5. how to perform common laboratory techniques including reflux, distillation, recrystallization, vacuum filtration.
- 6. how to create and carry out work up and separation procedures
- 7. how to critically evaluate data collected to determine the identity, purity, and percent yield of products and to summarize findings in writing in a clear and concise manner

Organic preparations:

i. Acetylation of one of the following compounds:

- amines (aniline, o-, m-, ptoluidines and o-, m-, p-anisidine) and phenols (β-naphthol, vanillin, salicylic acid) by any one method:
- a. Using conventional method.
- b. Using green approach
- ii. Benzolyation of one of the following amines

(aniline, o-, m-, p- toluidines and o-, m-, p-anisidine)

iii. Nitration of any one of the following:

17

40M

- a. Acetanilide/nitrobenzene by conventional method
- b. Salicylic acid by green approach (using ceric ammonium nitrate).

IR Spectral Analysis

IR Spectral Analysis of the following functional groups with examples

- a) Hydroxyl groups
- b) Carbonyl groups
- c) Amino groups
- d) Aromatic groups

MODEL PAPER

SECOND YEAR B.Sc., DEGREE EXAMINATION SEMESTER-III CHEMISTRY COURSE-III: ORGANIC CHEMISTRY & SPECTROSCOPY

Time: 3 hours

PART- A

Maximum Marks: 75 5 X 5 = 25 Marks

Answer any FIVE of the following questions. Each carries FIVE marks

- 1. Discuss two methods for preparation of aryl halides.
- 2. Explain the mechanism for Pinacol-Pinacolone rearrangement.
- 3. Discuss the mechanism for Bayer-villiger oxidation reaction.
- 4. Explain the effect of substituents on acidic strength of mono-carboxylic acids.
- 5. Write the mechanism for Claisen Condensation reaction.
- 6. Write the selection rules in rotational spectroscopy.
- 7. Explain Spin Spin coupling and Coupling Constant.
- 8. Explain types of electronic transitions in UV spectroscopy.

PART-B

5 X 10 = 50 Marks

Answer ALL the questions. Each carries TEN marks

9 (a). Give the mechanism & stereochemistry of SN¹& SN² reactions of alkyl halides with suitable example.

(or)

- (b). Explain the following reactions with mechanism.(i) Reimer-Tiemann reaction (ii) Fries rearrangement.
- 10 (a). Discuss the mechanism for following reactions. (i) Perkin reaction. (ii) Cannizaro reaction

10M

1.1

- (b). Write the preparation and any three synthetic applications of diethyl malonate.
- 11.(a). Explain acid and base hydrolysis reaction of esters with mechanism.

(or)

- (b). Explain the mechanisms of Curtius rearrangement & Arndt –Eistert reaction.
- 12.(a). (i) Write a note on vibrational degrees of freedom for polyatomic molecules.(ii) Explain different modes of vibrations & selection rules in IR spectroscopy.

(or)

- (b).(i) Define Bathochromic shift. Explain the effect of conjugation in U.V. spectroscopy.(ii) Discuss the principle of NMR spectroscopy.
- 13.(a). Write Woodward-Fieser rules for calculating λ max for conjugated dienes and α , β unsaturated carbonyl compounds, and apply them for one example each.

(or)

(b).(i) What is Fingerprint region. Explain its significance with an example.(ii) Write IR spectral data for any one alcohol, aldehyde and ketone

SEMESTER - IV

Course IV (INORGANIC, ORGANIC AND PHYSICAL CHEMISTRY) 60hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Tolearnaboutthelawsofabsorptionoflightenergybymoleculesandthesubsequentphotoch emical reactions.
- 2. Tounderstandtheconceptofquantumefficiencyandmechanismsofphotochemicalreaction s.

UNIT - I OrganometallicCompounds

8h

Definitionandclassification

compounds on the basis of bond type, Concept of hapticity of

organic ligands. Metal carbonyls: 18 electron rule, electron count of mononuclear,

polynuclearandsubstituted

metalcarbonylsof3dseries.Generalmethodsofpreparationofmonoandbinuclearcarbonylsof 3d series.P-acceptor behaviour of carbon monoxide. Synergic effects (VB approach) - (MO diagram of CO can be referred to for synergic effect to IR frequencies).

UNIT – II

Carbohydrates

Occurrence, classification and their biological importance, Monosaccharides:

Constitutionandabsolute

configurationofglucoseandfructose,epimersandanomers,mutarotation,determinationofringsiz eofglucose andfructose,Haworthprojectionsandconformationalstructures;Interconversions ofaldosesandketoses; Killiani-FischersynthesisandRuffdegradation; Disaccharides– Elementarytreatmentofmaltose, lactoseand sucrose.Polysaccharides–Elementarytreatmentof starch.

UNIT-III

Amino acids and proteins

Introduction: Definition of Amino acids, classification of Amino acids into alpha, beta, and gamma amino acids. Natural and essential amino acids - definition and examples, classification of alpha amino acids into acidic, basic and neutral amino acids with examples. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples - Glycine, Alanine, valine and leucine) by following methods: a) from halogenated carboxylic acid b) Gabriel Phthalimide synthesis c) strecker's synthesis.

Physical properties: Zwitter ion structure - salt like character - solubility, melting points, amphoteric character, definition of isoelectric point.

Chemical properties: General reactions due to amino and carboxyl groups - lactams from gamma and delta amino acids by heating- peptide bond (amide linkage). Structure and nomenclature of peptides and proteins.

Heterocyclic Compounds

Introduction and definition: Simple five membered ring compounds with one hetero atom Ex. Furan. Thiophene and pyrrole - Aromatic character – Preparation from 1, 4, -dicarbonyl compounds, Paul-Knorr synthesis.

6h

oforganometallic

8h

Properties: Acidic character of pyrrole - electrophillic substitution at 2 or 5 position, Halogenation, Nitration and Sulphonation under mild conditions - Diels Alder reaction in furan.

Pyridine – Structure - Basicity - Aromaticity- Comparison with pyrrole- one method of preparation and properties - Reactivity towards Nucleophilic substitution reaction.

UNIT- IV

NitrogenContainingFunctionalGroups

Preparation, properties and important reactions of nitrocompounds, amines and diazonium salts.

1. Nitro hydrocarbons

Nomenclature and classification-nitro hydrocarbons, structure -Tautomerism of nitroalkanes leading to aci and keto form, Preparation of Nitroalkanes, reactivity -halogenation, reaction with HONO (Nitrous acid), Nef reaction and Mannich reaction leading to Micheal addition and reduction.

2.Amines:

Introduction, classification, chiralityin amines (pyramidal inversion), importance and general methods of preparation.

Properties : Physical properties, Basicity of amines: Effect of substituent, solvent and steric effects. DistinctionbetweenPrimary,

secondaryandtertiaryaminesusingHinsberg'smethodandnitrousacid. Discussion of the following reactions with emphasis on the mechanistic pathway: Gabriel Phthalimidesynthesis,Hoffmann-

Bromamidereaction, Carbylaminereaction, Mannichreaction, Hoffmann's exhaustive methylation, Hofmann-elimination reaction and Copeelimination.

Diazonium

Salts:Preparationand

5h

3h

11h

syntheticapplicationsofdiazoniumsaltsincludingpreparationofarenes, haloarenes, phenols, cyanoandnitrocompounds. Couplingreactionsofdiazoniumsalts (preparationofazo dyes).

UNIT- V

Photochemistry

Difference between thermal and photochemical processes, Laws of photochemistry- Grothus-Draper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield-Photochemical reaction mechanism- hydrogen- chlorine and hydrogen- bromine reaction. Qualitative description of fluorescence, phosphorescence, Jablonski diagram, Photosensitized reactions- energy transfer processes (simple example).

Thermodynamics

The first law of thermodynamics-statement, definition of internal energy and enthalpy, Heat capacities and their relationship, Joule-Thomson effect- coefficient, Calculation of work for the expansion of perfect gas under isothermal and adiabatic conditions for reversible processes, State function. Temperature dependence of enthalpy of formation- Kirchoff s equation, Second law of thermodynamics Different Statements of the law, Carnot cycle and its efficiency, Carnot theorem, Concept of entropy, entropy as a state function, entropy changes in reversible and irreversible processes. Entropy changes in spontaneous and equilibrium processes. Third law of thermodynamics, Nernst heat theorem, Spontaneous and

non- spontaneous processes, Helmholtz and Gibbs energies-Criteria for spontaneity.

Co-curricular activities and Assessment Methods

ContinuousEvaluation:Monitoringtheprogressof student'slearning

ClassTests,WorksheetsandQuizzes

Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality

Semester-endExamination:criticalindicatorofstudent'slearningandteachingmethodsadoptedby teachersthroughoutthesemester.

List of Reference Books

- 1. Concise coordination chemistry by Gopalan and Ramalingam
- 2. Coordination Chemistry by Basalo and Johnson
- 3. Organic Chemistry by G.Mareloudan, Purdue Univ
- 4. Text book of physical chemistry by S Glasstone
- 6. Concise Inorganic Chemistry by J.D.Lee
- 7. Advanced Inorganic Chemistry Vol-I by Satyaprakash, Tuli, Basu and Madan
- 8. A Text Book of Organic Chemistry by Bahl and Arunbahl
- 9. A Text Book of Organic chemistry by I L FinarVol I
- 10. A Text Book of Organic chemistry by I L FinarVol II
- 11. Advanced physical chemistry by Gurudeep Raj

LABORATORY COURSE -IV 30hrs(2 h / w)

Practical Course-IVOrganic Qualitative analysis

50 M

(At the end of Semester- IV)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. Determine melting and boiling points of organic compounds
- 3. Understandtheapplication of concepts of different organic reactions studied in theory part of organic chemistry

Organic Qualitative analysis

50 M

Analysis of an organic compound through systematic qualitative procedure for functional group identification including the determination of melting point and boiling point with suitable derivatives.

Alcohols, Phenols, Aldehydes, Ketones, Carboxylic acids, Aromatic primary amines, amides and simple sugars

MODEL PAPER SECOND YEAR B.Sc., DEGREE EXAMINATION SEMESTER-IV CHEMISTRY COURSE -IV: INORGANIC, ORGANIC & PHYSICAL CHEMISTRY

Time: 3 hours

PART-A

Maximum Marks: 75 5 X 5 = 25 Marks

Answer any **FIVE** of the following questions. Each carries **FIVE** marks

- 1. Describe the 18 electron rule of mono nuclear and polynuclear metal carbonyls with suitable examples.
- 2. What are epimers and anomers. Give examples.
- 3. Discuss about iso electric point and zwitter ion.
- 4. Discuss the Paul-Knorr synthesis of five membered heterocyclic compounds.
- 5. Explain Tautomerism shown by nitro alkanes
- 6. Discuss the basic nature of amines.
- 7. Write the differences between thermal and photochemical reactions.
- 8. Derive heat capacities and derive $C_p C_v = R$

PART-B

Answer ALL the questions. Each carries TEN marks

9 (a). What are organometallic compounds? Discuss their Classification on the basis of type of bonds with examples.

(or)

- (b). Discuss the general methods of preparations of mono & bi-nuclear carbonyls of 3d series.
- 10 (a). Discuss the constitution, configuration and ring size of glucose. Draw the Haworth and Conformational structure of glucose.

(or)

- (b). (i) Explain Ruff's degradation.(ii) Explain Kiliani- Fischer synthesis.
- 11.(a). What are amino acids? Write any three general methods of preparation of amino acids.

(or)

- (b). Discuss the aromatic character of Furan, Thiophene and Pyrrole.
- 12.(a). Write the mechanism for the following. (i) Nef reaction (ii) Mannich reaction (or)
 - (b). (i) Explain Hinsberg separation of amines.(ii) Discuss any three synthetic applications of diazonium salts.
- 13.(a). What is quantum yield? Explain the photochemical combination of Hydrogen-Chlorine and Hydrogen - Bromine.

(or)

(b). Define entropy. Describe entropy changes in the reversible and irreversible process.

SEMESTER - IV

CourseV(INORGANIC & PHYSICAL CHEMISTRY) 60 hrs (4 h / w)

Course outcomes:

At the end of the course, the student will be able to;

- 1. Understand of boundary conditions and quantization, probability distribution, most probable values, uncertainty and expectation values
- 2. Applicationofquantizationtospectroscopy.
- 3. Varioustypesofspectraandtheiruseinstructuredetermination.

INORGANIC CHEMISTRY

UNIT-I

Coordination Chemistry

IUPAC nomenclature of coordination compounds, Structural and stereoisomerism in complexes with coordination numbers 4 and 6. Valence Bond Theory (VBT): Inner and outer orbital complexes. Limitations of VBT, Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry, Factors affecting the magnitude of crystal field splitting energy, Spectrochemical series, Comparison of CFSE for Octahedral and Tetrahedral complexes, Tetragonal distortion of octahedral geometry, Jahn-Teller distortion, square planar coordination.

UNIT -II

1. InorganicReactionMechanism:

Introductiontoinorganicreactionmechanisms.Conceptofreaction

pathways,transitionstate,intermediateand activatedcomplex. Labile and inert complexes, ligand substitution reactions - SN¹ and SN², Substitution reactions insquare planar complexes, Trans-effect, theories of transeffect and its applications

2. Stability of metal complexes:

Thermodynamic stability and kinetic stability, factors affecting the stability of metal complexes, chelate effect, determination of composition of complex by Job's method and mole ratio method.

BioinorganicChemistry:

Metalionspresentinbiological systems, classification of elements according to their action in biolog system.Geochemical effectonthedistributionofmetals,Sodium/Kical pump,carbonicanhydraseand carboxypeptidase.

concepts

12 h

26 h

4h

2h

8h

Excessanddeficiencyofsometracemetals.Toxicityofmetalions(Hg,Pb,CdandAs), reasonsfortoxicity,Useof chelatingagentsinmedicine,Cisplatinasananti-cancerdrug. Ironanditsapplicationinbio-systems,Haemoglobin,Myoglobin.Storageandtransferof iron.

PHYSICAL CHEMISTRY

UNIT-III

1 .Phase rule

6hConcept of phase, components, degrees of freedom. Thermodynamic derivation of Gibbs phase rule. Phase diagram of one component system - water system, Study of Phase diagrams of Simple eutectic systems i) Pb-Ag system, desilverisation of lead ii) NaCl-Water system, Congruent and incongruent melting point- Definition and examples for systems having congruent and incongruent melting point , freezing mixtures.

UNIT-IV

Electrochemistry

Specific conductance, equivalent conductance and molar conductance- Definition and effect of dilution. Cell constant. Strong and weak electrolytes,Kohlrausch's law and its applications, Definition of transport number,determination of transport number by Hittorf's method. Debye-Huckel-Onsagar's equation for strong electrolytes (elementary treatment only), Application of conductivity measurements- conductometric titrations.

Electrochemical Cells- Single electrode potential, Types of electrodes with examples: Metalmetal ion, Gas electrode, Inert electrode, Redox electrode, Metal-metal insoluble salt- salt anion. Determination of EMF of a cell, Nernst equation, Applications of EMF measurements - Potentiometric titrations.

Fuel cells- Basic concepts, examples and applications

UNIT-V

ChemicalKinetics:

The concept of reaction rates. Effect of temperature, pressure, catalyst and other factors on reaction rates. Order and molecularity of a reaction, Derivation of integrated rate equations for zero, first and second order reactions (both for equal and unequal concentrations of reactants). Half–life of a reaction. General methods for determination of order of a reaction. Concept of activation energy and its calculation from Arrhenius equation. Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).Enzyme catalysis- Specificity,

34 h

14h

14 h

factors affecting enzyme catalysis, Inhibitors and Lock & key model. Michaels- Menten equation- derivation, significance of Michaelis-Menten constant.

Co-curricular activities and Assessment Methods

ContinuousEvaluation:Monitoringtheprogressof student'slearning

Class Tests, Work sheets and Quizzes

Presentations, Projects and Assignments and Group Discussions: Enhances critical thinking skills and personality

Semester-endExamination:criticalindicatorofstudent'slearningandteachingmethodsadoptedby teachersthroughoutthesemester.

List of Reference Books

- 1. . Text book of physical chemistry by S Glasstone
- 2. Concise Inorganic Chemistry by J.D.Lee
- 3. Advanced Inorganic Chemistry Vol-I by Satyaprakash, Tuli, Basu and Madan
- 4. Advanced physical chemistry by Gurudeep Raj
- 5. Principles of physical chemistry by Prutton and Marron
- 6. Advanced physical chemistry by Bahl and Tuli
- 7. Inorganic Chemistry by J.E.Huheey
- 8. Basic Inorganic Chemistry by Cotton and Wilkinson
- 9. A textbook of qualitative inorganic analysis by A.I. Vogel
- 10. Atkins, P.W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 10th Ed(2014).
- 11. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 12. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP (2009).
- 13. Barrow, G.M. Physical Chemistry

SEMESTER - IV

CourseV	LABORATORY COURSE	30 hrs (2 h / w)	
Practical-Cou	rse -VConductometric and Potentiometric	Fitrimetry 50 M	

Course outcomes:

At the end of the course, the student will be able to;

- 1. Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. Apply conceptsof electrochemistry in experiments
- 3. Be familiar with electroanalytical methods and techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte

Conductometric and Potentiometric Titrimetry 50 M

- 1. **Conductometric titration** Determination of concentration of HCl solution using standard NaOH solution.
- 2. **Conductometric titration** Determination of concentration of CH₃COOH Solution using standard NaOH solution.
- 3. **Conductometric titration** Determination of concentration of CH₃COOH and HCl in a mixture using standard NaOH solution.
- 4. **Potentiometric titration** Determination of Fe (II) using standard K₂Cr₂O₇ solution.
- 5. Determination of rate constant for acid catalyzed ester hydrolysis.

MODEL PAPER SECOND YEAR B.Sc., DEGREE EXAMINATION SEMESTER-IV CHEMISTRY COURSE V: INORGANIC & PHYSICAL CHEMISTRY

Time: 3 hours

Maximum Marks: 75

PART- A5 X 5 = 25 Marks

Answer any **FIVE** of the following questions. Each carries **FIVE** marks

- 1. Write note on Jahn-Teller distortion.
- 2. Explain Labile & inert complexes.
- 3. Explain Job's method for determination of composition of complex.
- 4. Explain Thermodynamic derivation of Gibb's phase rule.
- 5. Explain any two conductometric titrations.
- 6. Write note on Fuel Cells with examples and applications.
- 7. What is enzyme catalysis? Write any three factors effecting enzyme catalysis.

8. Derive Michaels- Menten equation.

PART-B 5 X 10 = 50 Marks

Answer ALL the questions. Each carries TEN marks

9 (a). Explain Valence Bond theory with Inner and Outer orbital complexes. Write limitations of VBT.

(or)

- (b). Define CFSE. Explain the factors effecting the magnitude of crystal field splitting energy.
- 10 (a). Explain Trans effect. Explain the theories of trans effect and write any two applications of trans effect.

(or)

- (b). (i) Write the biological functions of Haemoglobin and Myoglobin.(ii) Write note on use of chelating agents in medicines.
- 11.(a). Define Phase rule and terms involved in it. Explain phase diagram of Pb-Ag system.

(or)

- (b). (i) Explain phase diagram for NaCl-water system.(ii) Explain briefly about Freezing mixtures.
- 12.(a). Define Transport number. Write experimental method for the determination of transport number by Hittorf method.

(or)

- (b). (i) Define single electrode potential.(ii) Explain four types of electrodes with examples.
- 13.(a). Explain general methods for determination of order of a reaction.

(or)

(b).Explain Collision theory and Activated complex theory of bimolecular reactions.

SUBJECT EXPERTS

Prof. C. Suresh Reddy Professor, Department of Chemistry S.V. University Tirupati.

Dr. M. Mahaboob Pacha Lecturer in Chemistry Government Degree College Ramachandrapuram – 533255

SYLLABUS VETTED BY

Prof. N.V.S. Naidu, Professor, Department of Chemistry S.V. University Tirupati.

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers,Sri Ram Nagar,6th Battalion Road, Atmakur(V),Mangalagiri(M), Guntur-522 503, Andhra Pradesh **Web**:www.apsche.org **Email**: acapsche@gmail.com

REVISED SYLLABUS OF B.Sc. (COMPUTER SCIENCE/ INFORMATION TECHNOLOGY) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-2021

PROGRAMME: THREE-YEAR B.Sc.

(B.Sc. Computer Science/ Information Technology (IT))

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities &

Model Q.P.) For Fifteen Courses of 1, 2, 3 & 4 Semesters) (To be Implemented from 2020-21 Academic Year)

Structure of Computer Science /Information Technology (IT)

Programme: B.Sc. with Computer Science as one of the Core Subjects. Discipline: Computer Science

Year	Semester	Paper Code	Subject	Hrs. per Week	Credits	IA	ES	Total
	Ι	C1	Problem Solving in C	4	3	25	75	100
First	Ι	C1-P	Problem Solving in C Lab	2	2		50	50
Year	II	C2	Data Structures using C	4	3	25	75	100
	II	C2-P	Data Structures using C Lab	2	2		50	50
Second Year	III	C3	Database Management System	4	3	25	75	100
	III	С3-Р	Database Management System Lab	2	2		50	50
	IV	C4	Object Oriented Programming using Java	4	3	25	75	100
	IV	C4-P	Object Oriented Programming using Java Lab	2	2		50	50
	IV	C5	Operating Systems	4	3	25	75	100
	IV	С5-Р	Operating Systems Lab using C/Java	2	2		50	50

PROBLEM SOLVING IN C

Semester	Course Code	Course Title	Hours	Credits
Ι	C1	PROBLEM SOLVING IN C	60	3

Objectives:

This course aims to provide exposure to problem-solving through programming. It introduces the concepts of the C Programming language.

Course Learning Outcomes:

Upon successful completion of the course, a student will be able to:

- 1. Understand the evolution and functionality of a Digital Computer.
- 2. Apply logical skills to analyse a given problem
- 3. Develop an algorithm for solving a given problem.
- 4. Understand 'C' language constructs like Iterative statements, Array processing, Pointers, etc.
- 5. Apply 'C' language constructs to the algorithms towrite a 'C' language program.

UNIT I

General Fundamentals: Introduction to computers: Block diagram of a computer, characteristics and limitations of computers, applications of computers, types of computers, computer generations.

Introduction to Algorithms and Programming Languages: Algorithm – Key features of Algorithms, Flow Charts, Programming Languages – Generations of Programming Languages – Structured Programming Language- Design and Implementation of Correct, Efficient and Maintainable Programs.

UNIT II

Introduction to C: Introduction – Structure of C Program – Writing the first C Program – File used in C Program – Compiling and Executing C Programs – Using Comments –

Keywords – Identifiers – Basic Data Types in C – Variables – Constants – I/O Statements in C- Operators in C- Programming Examples.

Decision Control and Looping Statements: Introduction to Decision Control Statements– Conditional Branching Statements – Iterative Statements – Nested Loops – Break and Continue Statement – Goto Statement

UNIT III

Arrays: Introduction – Declaration of Arrays – Accessing elements of the Array – Storing Values in Array– Operations on Arrays – one dimensional, two dimensional and multi dimensional arrays, character handling and strings.

UNIT IV

Functions: Introduction – using functions – Function declaration/ prototype – Function definition – function call – return statement – Passing parameters – Scope of variables – Storage Classes – Recursive functions.

Structure, Union, and Enumerated Data Types: Introduction – Nested Structures – Arrays of Structures – Structures and Functions– Union – Arrays of Unions Variables – Unions inside Structures – Enumerated Data Types.

UNIT V

Pointers: Understanding Computer Memory – Introduction to Pointers – declaring Pointer Variables – Pointer Expressions and Pointer Arithmetic – Null Pointers - Passing Arguments to Functions using Pointer – Pointer and Arrays – Memory Allocation in C Programs – Memory Usage – Dynamic Memory Allocation – Drawbacks of Pointers

Files: Introduction to Files – Using Files in C – Reading Data from Files – Writing Data to Files – Detecting the End-of-file – Error Handling during File Operations – Accepting Command Line Arguments.

BOOKS

- 1. E Balagurusamy Programming in ANSIC Tata McGraw-Hill publications.
- 2. Brain W Kernighan and Dennis M Ritchie The 'C' Programming language" Pearson publications.
- 3. Ashok N Kamthane: Programming with ANSI and Turbo C, Pearson Edition Publications.
- 4. YashavantKanetkar Let Us 'C' BPB Publications.

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity

B. General

- 1. Group Discussion
- 2. Try to solve MCQ's available online.
- 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Problem-solving exercises,
- 4. Practical assignments and laboratory reports,

- 5. Observation of practical skills,
- 6. Individual and group project reports like "Creating Text Editor in C".
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
Ι	C1-P	PROBLEM SOLVING IN C LAB	30	2

Problem solving in C LAB

- 1. Write a program to check whether the given number is Armstrong or not.
- 2. Write a program to find the sum of individual digits of a positive integer.
- 3. Write a program to generate the first n terms of the Fibonacci sequence.
- 4. Write a program to find both the largest and smallest number in a list of integer values
- 5. Write a program to demonstrate reflection of parameters in swapping of two integer values using **Call by Value&Call by Address**
- 6. Write a program that uses functions to add two matrices.
- 7. Write a program to calculate factorial of given integer value using recursive functions
- 8. Write a program for multiplication of twoN X N matrices.
- 9. Write a program to perform various string operations.
- 10. Write a program to search an element in a given list of values.
- 11. Write a program to sort a given list of integers in ascending order.
- 12. Write a program to calculate the salaries of all employees using *Employee* (*ID*, *Name, Designation, Basic Pay, DA, HRA, Gross Salary, Deduction, Net Salary*) structure.
 - a. DA is 30 % of Basic Pay
 - b. HRA is 15% of Basic Pay
 - c. Deduction is 10% of (Basic Pay + DA)
 - d. Gross Salary = Basic Pay + DA+ HRA
 - e. Net Salary = Gross Salary Deduction
- 13. Write a program to illustrate pointer arithmetic.

- 14. Write a program to read the data character by character from a file.
- 15. Write a program to createBook (ISBN,Title, Author, Price, Pages, Publisher)structureand store book details in a file and perform the following operations
 - a. Add book details
 - b. Search a book details for a given ISBN and display book details, if available
 - c. Update a book details using ISBN
 - d. Delete book details for a given ISBN and display list of remaining Books

DATA STRUCTURES USING C

Semester	Course Code	Course Title	Hours	Credits
II	C2	DATA STRUCTURES USING C	60	3

Course Objectives

To introduce the fundamental concept of data structures and to emphasize the importance of various data structures in developing and implementing efficient algorithms.

Course Learning Outcomes:

Upon successful completion of the course, a student will be able to:

- 1. Understand available Data Structures for data storage and processing.
- 2. ComprehendData Structure and their real-time applications Stack, Queue, Linked List, Trees and Graph
- 3. Choose a suitable Data Structures for an application
- 4. Develop ability to implement different Sorting and Search methods
- 5. Have knowledge onData Structures basic operations like insert, delete, search, update and traversal
- 6. Design and develop programs using various data structures
- 7. Implement the applications of algorithms for sorting, pattern matching etc

UNIT – I:

Introduction to Data Structures: Introduction to the Theory of Data Structures, Data Representation, Abstract Data Types, Data Types, Primitive Data Types, Data Structure and Structured Type, Atomic Type, Difference between Abstract Data Types, Data Types, and Data Structures, Refinement Stages

Principles of Programming and Analysis of Algorithms: Software Engineering, Program Design, Algorithms, Different Approaches to Designing an Algorithm, Complexity, Big 'O' Notation, Algorithm Analysis, Structured Approach to Programming, Recursion, Tips and Techniques for Writing Programs in 'C'

UNIT – II:

Arrays: Introduction to Linear and Non- Linear Data Structures, One- Dimensional Arrays, Array Operations, Two- Dimensional arrays, Multidimensional Arrays, Pointers and Arrays, an Overview of Pointers

Linked Lists: Introduction to Lists and Linked Lists, Dynamic Memory Allocation, Basic Linked List Operations, Doubly Linked List, Circular Linked List, Atomic Linked List, Linked List in Arrays, Linked List versus Arrays

UNIT – III:

Stacks: Introduction to Stacks, Stack as an Abstract Data Type, Representation of Stacks through Arrays, Representation of Stacks through Linked Lists, Applications of Stacks, Stacks and Recursion

Queues: Introduction, Queue as an Abstract data Type, Representation of Queues, Circular Queues, Double Ended Queues- Deques, Priority Queues, Application of Queues

UNIT – IV:

Binary Trees: Introduction to Non- Linear Data Structures, Introduction Binary Trees, Types of Trees, Basic Definition of Binary Trees, Properties of Binary Trees, Representation of Binary Trees, Operations on a Binary Search Tree, Binary Tree Traversal, Counting Number of Binary Trees, Applications of Binary Tree

UNIT – V:

Searching and sorting: Sorting – An Introduction, Bubble Sort, Insertion Sort, Merge Sort, Searching – An Introduction, Linear or Sequential Search, Binary Search, Indexed Sequential Search

Graphs: Introduction to Graphs, Terms Associated with Graphs, Sequential Representation of Graphs, Linked Representation of Graphs, Traversal of Graphs, Spanning Trees, Shortest Path, Application of Graphs.

BOOKS:

1. "Data Structures using C", ISRD group Second Edition, TMH

- 2. "Data Structures through C", YashavantKanetkar, BPB Publications
- 3. "Data Structures Using C" Balagurusamy E. TMH

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity))

B. General

- 1. Group Discussion
- 2. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Programming exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports.
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
II	С2-Р	DATA STRUCTURES USING C	30	2
		LAB		

- 1. Write a program to read 'N' numbers of elements into an array and also perform the following operation on an array
 - a. Add an element at the begging of an array
 - b. Insert an element at given index of array
 - c. Update a element using a values and index
 - d. Delete an existing element
- 2. Write a program using stacks to convert a given
 - a. postfix expression to prefix
 - b. prefix expression to postfix
 - c. infix expression to postfix
- 3. Write Programs to implement the Stack operations using an array
- 4. Write Programs to implement the Stack operations using Liked List.
- 5. Write Programs to implement the Queue operations using an array.
- 6. Write Programs to implement the Queue operations using Liked List.
- 7. Write a program for arithmetic expression evaluation.
- 8. Write a program for Binary Search Tree Traversals
- 9. Write a program to implement dequeue using a doubly linked list.
- 10. Write a program to search an item in a given list using the following Searching Algorithms
 - a. Linear Search
 - b. Binary Search.
- 11. Write a program for implementation of the following Sorting Algorithms
 - a. Bubble Sort
 - b. Insertion Sort
 - c. Quick Sort
- 12. Write a program for polynomial addition using single linked list
- Write a program to find out shortest path between given Source Node and Destination Node in a given graph using Dijkstrar's algorithm.

- 14. Write a program to implement Depth First Search graph traversals algorithm
- 15. Write a program to implement Breadth First Search graph traversals algorithm

Semester	Course Code	Course Title	Hours	Credits
III	C3	DATABASE MANAGEMENT	60	3
		SYSTEMS		

DATABASE MANAGEMENT SYSTEMS

Course Objective:

The objective of the course is to introduce the design and development of databases with special emphasis on relational databases.

Course Learning Outcomes:

On completing the subject, students will be able to:

- 1. Gain knowledge of Database and DBMS.
- 2. Understand the fundamental concepts of DBMS with special emphasis on relational data model.
- 3. Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database
- 4. Model databaseusing ER Diagrams and design database schemas based on the model.
- 5. Create a small database using SQL.
- 6. Store, Retrieve data in database.

UNIT I

Overview of Database Management System: Introduction to data, information, database, database management systems, file-based system, Drawbacks of file-Based System, database approach, Classification of Database Management Systems, advantages of database approach, Various Data Models, Components of Database Management System, three schema architecture of data base, costs and risks of database approach.

UNIT II

Entity-Relationship Model: Introduction, the building blocks of an entity relationship diagram, classification of entity sets, attribute classification, relationship degree, relationship classification, reducing ER diagram to tables, enhanced entity-relationship model (EER

model), generalization and specialization, **IS A** relationship and attribute inheritance, multiple inheritance, constraints on specialization and generalization, advantages of ER modelling.

UNIT III

Relational Model: Introduction, CODD Rules, relational data model, concept of key, relational integrity, relational algebra, relational algebra operations, advantages of relational algebra, limitations of relational algebra, relational calculus, tuple relational calculus, domain relational Calculus (DRC), Functional dependencies and normal forms upto 3rd normal form.

UNIT IV

Structured Query Language: Introduction, History of SQL Standard, Commands in SQL, Data Types in SQL, Data Definition Language, Selection Operation, Projection Operation, Aggregate functions, Data Manipulation Language, Table Modification Commands, Join Operation, Set Operations, View, Sub Query.

UNIT V

PL/SQL: Introduction, Shortcomings of SQL, Structure of PL/SQL, PL/SQL Language Elements, Data Types, Operators Precedence, Control Structure, Steps to Create a PL/SQL, Program, Iterative Control, Procedure, Function, Database Triggers, Types of Triggers.

BOOKS:

- Database System Concepts by Abraham Silberschatz, Henry Korth, and S. Sudarshan, McGrawhill
- 2. Database Management Systems by Raghu Ramakrishnan, McGrawhill
- 3. Principles of Database Systems by J. D. Ullman
- 4. Fundamentals of Database Systems by R. Elmasri and S. Navathe
- 5. SQL: The Ultimate Beginners Guide by Steve Tale.

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

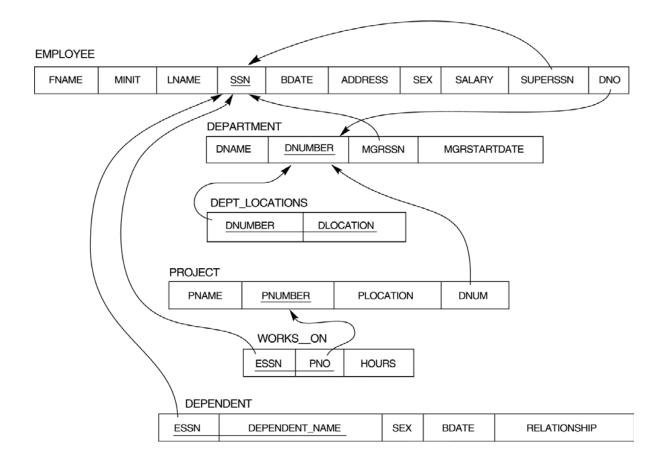
- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity

B. General

- 1. Group Discussion
- 2. Try to solve MCQ's available online.
- 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;


- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Practical assignments and laboratory reports,
- 4. Observation of practical skills,

- 5. Individual and group project reports like Create your college database for placement purpose.
- 6. Efficient delivery using seminar presentations,
- 7. Viva voce interviews.
- 8. Computerized adaptive testing, literature surveys and evaluations,
- 9. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
III	С3-Р	DATABASE MANAGEMENT	30	2
		SYSTEMS LAB		

- 1. Draw ER diagram for hospital administration
- 2. Creation of college database and establish relationships between tables
- 3. Relational database schema of a company is given in the following figure.

Relational Database Schema - COMPANY

Questions to be performed on above schema

- 1. Create above tables with relevant Primary Key, Foreign Key and other constraints
- 2. Populate the tables with data
- 3. Display all the details of all employees working in the company.
- 4. Display ssn, lname, fname, address of employees who work in department no 7.

- Retrieve the *Birthdate and Address* of the employee whose name is 'Franklin T. Wong'
- 6. Retrieve the name and salary of every employee
- 7. Retrieve all distinct salary values
- 8. Retrieve all employee names whose address is in 'Bellaire'
- 9. Retrieve all employees who were born during the 1950s
- 10. Retrieve all employees in department 5 whose salary is between 50,000 and 60,000(inclusive)
- 11. Retrieve the names of all employees who do not have supervisors
- 12. Retrieve SSN and department name for all employees
- 13. Retrieve the name and address of all employees who work for the 'Research' department
- 14. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.
- 15. For each employee, retrieve the employee's name, and the name of his or her immediate supervisor.
- 16. Retrieve all combinations of Employee Name and Department Name
- 17. Make a list of all project numbers for projects that involve an employee whose last name is 'Narayan' either as a worker or as a manager of the department that controls the project.
- Increase the salary of all employees working on the 'ProductX' project by 15%. Retrieve employee name and increased salary of these employees.
- 19. Retrieve a list of employees and the project name each works in, ordered by the employee's department, and within each department ordered alphabetically by employee first name.
- 20. Select the names of employees whose salary does not match with salary of any employee in department 10.
- Retrieve the employee numbers of all employees who work on project located in Bellaire, Houston, or Stafford.
- 22. Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the average salary. Display with proper headings.
- 23. Find the sum of the salaries and number of employees of all employees of the 'Marketing' department, as well as the maximum salary, the minimum salary, and the average salary in this department.

- 24. Select the names of employees whose salary is greater than the average salary of all employees in department 10.
- 25. Delete all dependents of employee whose ssn is '123456789'.
- 26. Perform a query using alter command to drop/add field and a constraint in Employee table.

Semester	Course Code	Course Title	Hours	Credits
IV	C4	OBJECT ORIENTATED	60	3
		PROGRAMMING THROUGH		
		JAVA		

OBJECT ORIENTATED PROGRAMMING THROUGH JAVA

Objectives:

To introduce the fundamental concepts of Object-Oriented programming and to design & implement object oriented programming concepts in Java.

Course Learning Outcomes: At the end of this course student will:

- **1.** Understand the benefits of a well-structured program
- 2. Understand different computer programming paradigms
- 3. Understand underlying principles of Object-Oriented Programming in Java
- 4. Develop problem-solving and programming skills using OOP concepts
- **5.** Develop the ability to solve real-world problems through software development in high-level programming language like Java

UNIT – I

Introduction to Java: Features of Java, The Java virtual Machine, Parts of Java

Naming Conventions and Data Types: Naming Conventions in Java, Data Types in Java, Literals

Operators in Java: Operators, Priority of Operators

Control Statements in Java: if... else Statement, do... while Statement, while Loop, for Loop, switch Statement, break Statement, continue Statement, return Statement

Input and Output: Accepting Input from the Keyboard, Reading Input with Java.util.Scanner Class, Displaying Output with System.out.printf(), Displaying Formatted Output with String.format()

Arrays: Types of Arrays, Three Dimensional Arrays (3D array), arrayname.length, Command Line Arguments

UNIT – II

Strings: Creating Strings, String Class Methods, String Comparison, Immutability of Strings **Introduction to OOPs:** Problems in Procedure Oriented Approach, Features of Object-Oriented Programming System (OOPS)

Classes and Objects: Object Creation, Initializing the Instance Variables, Access Specifiers, Constructors

Methods in Java:Method Header or Method Prototype, Method Body, Understanding Methods, Static Methods, Static Block, The keyword 'this', Instance Methods, Passing Primitive Data Types to Methods, Passing Objects to Methods, Passing Arrays to Methods, Recursion, Factory Methods

Inheritance: Inheritance, The keyword 'super', The Protected Specifier, Types of Inheritance

UNIT – III

Polymorphism: Polymorphism with Variables, Polymorphism using Methods, Polymorphism with Static Methods, Polymorphism with Private Methods, Polymorphism with Final Methods, final Class

Type Casting: Types of Data Types, Casting Primitive Data Types, Casting Referenced Data Types, The Object Class

Abstract Classes: Abstract Method and Abstract Class

Interfaces: Interface, Multiple Inheritance using Interfaces

Packages: Package, Different Types of Packages, The JAR Files, Interfaces in a Package, Creating Sub Package in a Package, Access Specifiers in Java, Creating API Document

Exception Handling: Errors in Java Program, Exceptions, throws Clause, throw Clause, Types of Exceptions, Re – throwing an Exception

UNIT – IV

Streams: Stream, Creating a File using FileOutputStream, Reading Data from a File uingFileInputStream, Creating a File using FileWriter, Reading a File using FileReader, Zipping and Unzipping Files, Serialization of Objects, Counting Number of Characters in a File, File Copy, File Class

Threads: Single Tasking, Multi Tasking, Uses of Threads, Creating a Thread and Running it, Terminating the Thread, Single Tasking Using a Thread, Multi Tasking Using Threads, Multiple Threads Acting on Single Object, Thread Class Methods, Deadlock of Threads, Thread Communication, Thread Priorities, thread Group, Daemon Threads, Applications of Threads, Thread Life Cycle

UNIT – V

Applets: Creating an Applet, Uses of Applets, <APPLET> tag, A Simple Applet, An Applet with Swing Components, Animation in Applets, A Simple Game with an Applet, Applet Parameters

Java Database Connectivity: Database Servers, Database Clients, JDBC (Java Database Connectivity), Working with Oracle Database, Working with MySQL Database, Stages in a JDBC Program, Registering the Driver, Connecting to a Database, Preparing SQL Statements, Using jdbc–odbc Bridge Driver to Connect to Oracle Database, Retrieving Data from MySQL Database, Retrieving Data from MS Access Database, Stored Procedures and CallableStatements, Types of Result Sets

BOOKS:

- 1. Core Java: An Integrated Approach, Authored by Dr. R. Nageswara Rao &Kogent Learning Solutions Inc.
- 2. E.Balaguruswamy, Programming with JAVA, A primer, 3e, TATA McGraw-Hill Company.
- John R. Hubbard, Programming with Java, Second Edition, Schaum's outline Series, TMH.
- 4. Deitel&Deitel. Java TM: How to Program, PHI (2007)

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity

B. General

- 1. Group Discussion
- 2. Try to solve MCQ's available online.
- 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Programming exercises,

- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports.
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
IV	C4-P	OBJECT ORIENTATED	30	2
		PROGRAMMING THROUGH		
		JAVA LAB		

- Write a program to read *Student Name, Reg.No, Marks*[5] and calculate *Total*, *Percentage, Result*. Display all the details of students
- 2. Write a program to perform the following String Operations
 - **a.** Read a string
 - **b.** Find out whether there is a given substring or not
 - c. Compare existing string by another string and display status
 - d. Replace existing string character with another character
 - e. Count number of works in a string
- 3. Java program to implements Addition and Multiplication of two N X N matrices.
- 4. Java program to demonstrate the use of Constructor.
- 5. Calculate area of the following shapes using method overloading.
 - **a.** Triangle
 - b. Rectangle
 - c. Circle
 - d. Square
- 6. Implement inheritance between Person (Aadhar, Surname, Name, DOB, and Age) and Student (Admission Number, College, Course, Year)classes where ReadData(), DisplayData() are overriding methods.
- 7. Java program for implementing Interfaces
- 8. Java program on Multiple Inheritance.
- 9. Java program for to display *Serial Number from 1 to N* by creating two Threads
- 10. Java program to demonstrate the following exception handlings
 - a. Divided by Zero
 - b. Array Index Out of Bound
 - c. File Not Found
 - d. Arithmetic Exception
 - e. User Defined Exception

- **11.** Create an Applet to display different shapes such as Circle, Oval, Rectangle, Square and Triangle.
- 12. Write a program to create *Book* (*ISBN,Title, Author, Price, Pages, Publisher*)structure and store book details in a file and perform the following operations
 - a. Add book details
 - b. Search a book details for a given ISBN and display book details, if available
 - c. Update a book details using ISBN
 - d. Delete book details for a given ISBN and display list of remaining Books

OPERATING SYSTEMS

Semester	Course Code	Course Title	Hours	Credits
IV	C5	OPERATING SYSTEMS	60	2

Objectives:

This course aims to introduce the structure and organization of a file system. It emphasizes various functions of an operating system like memory management, process management, device management, etc.

Course Learning Outcomes:

Upon successful completion of the course, a student will be able to:

- 1. Know Computer system resources and the role of operating system in resource management with algorithms
- 2. Understand Operating System Architectural design and its services.
- 3. Gain knowledge of various types of operating systems including Unix and Android.
- 4. Understand various process management concepts including scheduling, synchronization, and deadlocks.
- 5. Have a basic knowledge about multithreading.
- 6. Comprehenddifferent approaches for memory management.
- 7. Understand and identify potential threats to operating systems and the security features design to guard against them.
- 8. Specify objectives of modern operating systems and describe how operating systems have evolved over time.
- 9. Describe the functions of a contemporary operating system

UNIT- I

What is Operating System? History and Evolution of OS, Basic OS functions, Resource Abstraction, Types of Operating Systems– Multiprogramming Systems, Batch Systems, Time Sharing Systems; Operating Systems for Personal Computers, Workstations and Hand-held Devices, Process Control & Real time Systems.

UNIT- II

Processor and User Modes, Kernels, System Calls and System Programs, System View of the Process and Resources, ProcessAbstraction, ProcessHierarchy, Threads, Threading Issues, Thread Libraries; Process Scheduling, Non-Preemptive and Preemptive Scheduling Algorithms.

UNIT III

Process Management:Deadlock, Deadlock Characterization, Necessary andSufficient Conditions forDeadlock, Deadlock Handling Approaches: Deadlock Prevention, Deadlock Avoidance and Deadlock Detection and Recovery.

Concurrent and Dependent Processes, Critical Section, Semaphores, Methods for Interprocess Communication; Process Synchronization, Classical Process Synchronization Problems: Producer-Consumer, Reader-Writer.

UNIT IV

Memory Management:Physical and Virtual Address Space; MemoryAllocation Strategies– Fixed and -Variable Partitions, Paging, Segmentation, Virtual Memory.

UNIT V

File and I/O Management, OSsecurity : DirectoryStructure, File Operations, File Allocation Methods, Device Management, Pipes, Buffer, Shared Memory, Security Policy Mechanism, Protection, Authentication and Internal Access Authorization

Introduction to Android Operating System, Android Development Framework, Android Application Architecture, Android Process Management and File System, Small Application Development using Android Development Framework.

REFERENCE BOOKS:

- Operating System Principles by Abraham Silberschatz, Peter Baer Galvin and Greg Gagne (7thEdition) Wiley India Edition.
- 2. Operating Systems: Internals and Design Principles by Stallings (Pearson)
- 3. Operating Systems by J. Archer Harris (Author), Jyoti Singh (Author) (TMH)
- 4. Online Resources for UNIT V

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity

B. General

- 1. Group Discussion
- 2. Try to solve MCQ's available online.
- 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Programming exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports.

- 7. Efficient delivery using seminar presentations,
- 8. Viva-Voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

Semester	Course Code	Course Title	Hours	Credits
IV	C-5	OPERATING SYSTEMS LAB	30	2
		USING C/Java		

- 1. Write a program to implement Round Robin CPU Scheduling algorithm
- 2. Simulate SJF CPU Scheduling algorithm
- 3. Write a program the FCFS CPU Scheduling algorithm
- 4. Write a program to Priority CPU Scheduling algorithm
- 5. Simulate Sequential file allocation strategies
- 6. Simulate Indexed file allocation strategies
- 7. Simulate Linked file allocation strategies
- 8. Simulate MVT and MFT memory management techniques
- 9. Simulate Single level directory File organization techniques
- 10. Simulate Two level File organization techniques
- 11. Simulate Hierarchical File organization techniques
- 12. Write a program for Bankers Algorithm for Dead Lock Avoidance
- 13. Implement Bankers Algorithm Dead Lock Prevention.
- 14. Simulate all Page replacement algorithms.
 - a) FIFO
 - b) LRU
 - c) LFU
- 15. Simulate Paging Techniques of memory management

SUBJECT EXPERTS

Dr.M.Ussenaiah Dept of Computer Science, Vikrama Simhapuri University

> *Dr.A.Kavitha*, Govt. Degree College, Repalle

SYLLABUS VETTED BY

Dr.Gangadhar, Dept of Computer Science Acgharya Nagarjuna University, Nagarjuna Nagar

ANDHRA UNIVERSITY B. Sc ELECTRONICS SYLLABUS UNDER CBCS

Semester	Paper	Subject		ES	Total
SEMESTER I	Ι	CIRCUIT THEORY AND ELECTRONIC DEVICES	25	75	100
		Lab	50	0	50
SEMESTER II	Π	Digital Electronics	25	75	100
		Lab	0	50	50
SEMESTER III	III	Analog Circuits and Communication	25	75	100
		Lab	50	0	50
SEMESTER IV	IV	MICROPROCESSOR SYSTEMS	25	75	100
	1,	Lab	0	50	50
	V	MICRO CONTROLLER AND INTERFACING	25	75	100
		Lab	0	50	50

B.Sc. Electronics Syllabus under CBCS

w.e.f. 2020-21 (revised in June 2020)

SEMESTER-1

PAPER – I

Т

CIRCUIT THEORY AND ELECTRONIC DEVICES

Objectives:

- ➢ To explain the basic concepts and laws of DC and AC electrical networks and solve them using mesh and nodal analysis techniques.
- > To analyze circuits in time and frequency domain.
- \succ

o synthesize the networks using passive elements.

- To understand the construction, working and VI characteristics of electronic devices.
- \blacktriangleright To understand the concept of power supply.

UNIT- 1: (12Hrs)

SINUSOIDAL ALTERNATING WAVEFORMS:

Definition of current and voltage. The sine wave, general format of sine wave for voltage or current, phase relations, average value, effective (R.M.S) values. Differences between A.C and D.C. Phase relation of R, L and C

UNIT-II: (12hrs)

PASSIVE NETWORKS AND NETWORKS THEOREMS (D.C):

Branch current method, Nodal Analysis, star to delta & delta to star conversions. Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power, Milliman and Reciprocity theorems.

UNIT-III: (12hrs)

RC, RL AND RLC CIRCUITS:

Frequency response of RC and RL circuits, their action as low pass and high pass filters. Passive differentiating and integrating circuits. Series resonance and parallel resonance circuits, Q - Factor.

UNIT-IV: (12hrs)

BJT, FET and UJT:

BJT: Construction, working, and characteristics of CE Configurations. Hybrid parameters and hybrid equivalent circuit of CE Transistor,

FET: Construction, working and characteristics of JFET and MOSFET. Advantages of FET over BJT.

UJT: Construction, working and characteristics of UJT. UJT as a Relaxation oscillator.

UNIT-V:(12hrs)

POWER SUPPLIES & PHOTO ELECTRIC DEVICES

Rectifiers: Half wave, full wave rectifiers-Efficiency-ripple factor- Filters- L-section& π -section filters. Three terminal fixed voltage I.C. regulators(78XX and &79XX). Light Emitting Diode – Photo diode and LDR.

TEXT BOOKS:

- 1. Introductory circuit Analysis (UBS Publications) ---- Robert L. Boylestad.
- 2. Electronic Devices and Circuit Theory --- Robert L. Boylestad &

Louisashelsky.

- 3. Circuit Analysis by P.Gnanasivam- Pearson Education
- 4. Electronic Devices and Circuit Theory --- Robert L. Boylestad & Louis Nashelsky.
- 5. Electronic Devices and Circuits I T.L.Floyd- PHI Fifth Edition

REFERENCE BOOKS:

- 1. Engineering Circuit Analysis By: Hayt & Kemmerly MG.
- 2. Networks and Systems D.Roy Chowdary.
- 3. Unified Electronics (Circuit Analysis and Electronic Devices) by

Agarwal- Arora

4. Electric Circuit Analysis- S.R. Paranjothi- New Age International.

- 5. Integrated Electronics Millmam & Halkias.
- 6. Electronic Devices & Circuits Bogart.
- 7. Sedha R.S., A Text Book Of Applied Electronics, S.Chand & Company Ltd

Outcomes:-

- ✓ Apply concepts of electric network topology, nodes, branches, loops to solve circuit problems including the use of computer simulation.
- \checkmark Apply time and frequency concepts of analysis.
- \checkmark Synthesize the network using passive elements.
- ✓ Know about amplifier circuits, switching circuits and oscillator circuits their design and use in electronics.
- \checkmark Design and construction of a power supply.

ELECTRONICS LAB-I

(Circuit Theory and Electronic Devices)

LAB LIST:

- 1. Thevenin's Theorem-verification
- 2. Norton's Theorem-verification
- 3. Maximum Power Transfer Theorem-verification
- 4. LCR series resonance circuit.
- 5. BJT input and output characteristics
- 6.FET Output and transfer characteristics
- 7. UJT VI characteristics
- **8.LDR** characteristics
- 9. IC regulated power supply(IC-7805)

Lab experiments are to be done on breadboard and simulation software (using multisim) and output values are to be compared and justified for variation.

B.Sc. Electronics Syllabus under CBCS w.e.f. 2020-21 (revised in June 2020)

<u>SEMESTER – II</u>

PAPER -2

Digital Electronics

Objectives:

- > To understand the number systems, Binary codes and Complements.
- To understand the Boolean algebra and simplification of Boolean expressions.
- To analyze logic processes and implement logical operations using combinational logic circuits.
- To understand the concepts of sequential circuits and to analyze sequential systems in terms of state machines.
- > To understands characteristics of memory and their classification.
- > To implement combinational and sequential circuits using VHDL.
- \triangleright

Unit – I (12hrs)

NUMBER SYSTEM AND CODES: Decimal, Binary, Hexadecimal, Octal. Codes: BCD, Gray and Excess-3 codes- code conversions- Complements (1's, 2's,9's and 10's), Addition - Subtraction using complement methods.

Unit- II (12hrs)

BOOLEAN ALGEBRA AND THEOREMS: Boolean Theorems, De-Morgan's laws. Digital logic gates, Multi level NAND & NOR gates. Standard representation of logic functions (SOP and POS), Minimization Techniques (Karnaugh Map Method: 2,3 variables).

Unit-III (12hrs)

COMBINATIONAL DIGITAL CIRCUITS:

Adders-Half & full adder, Subtractor-Half and full subtractors, Parallel binary adder, Magnitude Comparator, Multiplexers (4:1)) and Demultiplexers (1:4), Encoder (8-line-to-3-line) and Decoder (3-line-to-8-line). IC-LOGIC FAMILIES: TTL logic, CMOS Logic families (NAND&NOR Gates).

UNIT-IV (12hrs)

SEQUENTIAL DIGITAL CIRCUITS:

Flip Flops: S-R FF, J-K FF, T and D type FFs, Master-Slave FFs, Excitation tables, Registers:-Serial In Serial Out and Parallel In and Parallel Out, Counters Asynchronous-, Mod-8, Mod-10, Synchronous-4-bit & Ring counter.

UNIT-(12hrs)

MEMORY DEVICES:

General Memory Operations, ROM, RAM (Static and Dynamic), PROM, EPROM, EEPROM, EAROM,

TEXT BOOKS:

- 1. M.Morris Mano, "Digital Design "3rd Edition, PHI, New Delhi.
- 2. Ronald J. Tocci. "Digital Systems-Principles and Applications" 6/e. PHI. New Delhi. 1999.(UNITS I to IV)
- 3. G.K.Kharate-Digital electronics-oxford university press
- 4. S.Salivahana & S. Arivazhagan-Digital circuits and design
- 5. Fundamentals of Digital Circuits by Anand Kumar

Reference Books :

- 1. Herbert Taub and Donald Schilling. "Digital Integrated Electronics" . McGraw Hill. 1985.
- 2. S.K. Bose. "Digital Systems". 2/e. New Age International. 1992.
- 3. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters : Fundamentals & Applications". TMH. 1994.
- 4. Malvino and Leach. "Digital Principles and Applications". TMG Hill Edition.

Outcomes:-

- \checkmark Develop a digital logic and apply it to solve real life problems.
- ✓ Analyze, design and implement combinational logic circuits.
- ✓ Classify different semiconductor memories.
- ✓ Analyze, design and implement sequential logic circuits.
- Simulate and implement combinational and sequential logic circuits using VHDL

ELECTRONICS LAB-2 (DIGITAL ELECTRONICS LAB)

LAB LIST:

- 1. Verification of IC-logic gates
- 2. Realization of basic gates using discrete components (resistor, diodes & transistor)
- 3. Realization of basic gates using Universal gates (NAND & NOR gates)
- 4. Verify Half adder and full adder using gates
- 5. Verify Half subtractor and full subtractor using gates.
- 6. Verify the truth table Multiplexer and demultiplexer.
- 7. Verify the truth table Encoder and decoder.
- 8. Verify the truth table of RS , JK, T-F/F using NAND gates
- 9. 4-bit binary parallel adder and subtractor using IC 7483
- 10. BCD to Seven Segment Decoder using IC -7447/7448

Lab experiments are to be done on breadboard and simulation software (using

multisim) and output values are to be compared and justified for variation.

B.Sc. Electronics Syllabus under CBCS w.e.f. 2020-21 (revised in June 2020) 2nd YEAR

<u>SEMESTER – III</u>

PAPER - 3

Analog Circuits and Communication

OBJECTIVES:

- To understand the concepts, working principles and key applications of linear integrated circuits.
- > To perform analysis of circuits based on linear integrated circuits.
- To design circuits and systems for particular applications using linear integrated circuits.
- To introduce students to various modulation and demodulation techniques of analog communication.
- > To analyse different parameters of analog communication techniques.
- > It also focuses on Transmitters and Receivers.

Unit – I (12hrs)

OPERATIONAL AMPLIFIERS: Definition, Characteristics of Op-Amp, Block diagram of op-amp, inverting, noninverting, virtual ground, , summing amplifier, subtractor, voltage follower, op-amp parameters, voltage to current convertor ,integrator, differentiator, differential amplifier, Logarithmic amplifier.

Unit- II:(12hrs)

OP-AMP CIRCUITS: voltage regulator, comparator, zero cross detecting circuit, instrumentation amplifier, Schmitt trigger. sine wave generator, square wave generator, triangular wave generator, Active filters (Basics)-low pass, high pass, band pass filters IC-555 –functional block diagram and mention it's applications

UNIT -III (12Hrs) AMPLITUDE MODULATION:

Need for modulation, amplitude modulation-frequency spectrum of AM wave, representation of AM, power relations in the AM wave. Generation of AM- Transistor modulators. Detection of AM signals – Diode detector.

UNIT-IV (12hrs) FREQUENCY MODULATION:

Theory of FM, Frequency deviation and carrier swing, modulation index, deviation ratio, percent modulation. Mathematical representation of FM, frequency spectrum and bandwidth of FM waves, Generation of FM signals – Varactor diode modulator and Reactance modulator. Detection of FM waves – FM demodulation with discriminator.

UNIT-V (12hrs) RADIO BROADCASTING AND RECEPTION:

Spectrum of electromagnetic waves, Radio broadcasting and reception, Transmitter, AM receivers- Straight forward receiver, Super heterodyne receiver. FM receivers.

TEXT BOOKS:

- 1. Op Amp and Linear Integrated Circuits By Ramakant Gaykwad
- 2. Linear Integrated Circuits By Roy Choudary
- 3. Unified Electronics Vol II J.P. Agarwal and Amit Agarwal.
- 4. Electronic Communications George Kennedy
- 5. Antennas and Wave Propagation G.S.N.Raju PHI
- 6. Principles of communication system -Herbert Taub & D.L.Schilling

Reference Books :

- 1. Jacob Millan ,Micro Electronics,McGraw Hill.
- 2. Mithal G K, Electronic Devices and Circuits Thana Publishers.
- 3. Allan Motter shead ,Electronic Devices and Circuits An Introduction- Prentice Hall
- 4. Electronic Communications Roody & Colen
- 5. Communication Systems Hayken ---- 4th Edition
- 6. Modern digital and analog communication system B.P. Lathi

OUTCOMES:

- ✓ Understand the fundamentals and areas of applications for the integrated circuits.
- ✓ Analyze important types of integrated circuits.
- Demonstrate the ability to design practical circuits that perform the desired operation.
- ✓ Select the appropriate integrated circuit modules to build a given application.
- ✓ Use of different modulation and demodulation techniques used in analog communication.
- \checkmark Identify and solve basic communication problems.
- ✓ Analyze transmitters and receiver circuits.

Electronics Lab - 3

(Analog Circuits and Communication)

LAB LIST:

.

- 1. Op-Amp as inverting and non-inverting
- 2. OpAmp Voltage follower and current follower.
- 3. Op-Amp as integrator and differentiator
- 4. Op-Amp as adder & subtractor
- 5. Op-Amp as voltage to current converter
- 6. Op-Amp as square wave generator
- 7. Amplitude modulation and demodulation.
- 8. AM Transimitter and Receiver.
- 9. FM Transmitter and Receiver.

B.Sc. Electronics Syllabus under CBCS w.e.f. 2020-21 (revised in June 2020) 2nd YEAR

Semester-IV

Paper- IV

I

TITLE: MICROPROCESSOR SYSTEMS

OBJECTIVES:

- To understand basic architecture of 16 bit and 32 bit microprocessors.
- To understand interfacing of 16 bit microprocessor with memory and peripheral chips involving system design.
- To understand techniques for faster execution of instructions and improve speed of operation and performance of microprocessors
- To understand RISC based microprocessors.
- To understand concept of multi core processors.

UNIT -I: (12Hrs)

CPU ARCHITECTURE

Introduction to Microprocessor, INTEL -8085(*P*) Architecture, CPU, ALU unit, Register organization, Address, data and control Buses. Pin configuration of 8085. Addressing modes 8086 Microprocessor: Architecture, Pin description. Instruction format, Instruction Execution timing, Addressing modes

UNIT -II: (12 Hrs)

8085 Instruction Set:

Data transfer Instruction, Logical Instructions, Arithmetic Instructions, Branch Instructions, Machine Control instructions.

UNIT -III: (12Hrs)

Assembly Language Programming using 8085, Programmes for Addition, Subtraction, Multiplication, Division, largest and smallest number in an array. BCD to ASCII and ASCII to BCD.

UNIT -IV: (12Hrs)

Basic 8086 Configurations – Minimum mode and Maximum Mode, Interrupt Priority Management I/O Interfaces: Serial Communication interfaces, Parallel Communication, Programmable Timers, Keyboard and display, DMA controller

UNIT -V: (12Hrs) ARM PROCESSOR: Introduction to 16/32 bit processors, Arm architecture & organization, Arm based MCUs, Programming model, Instruction set.

TEXT BOOKS:

- 1. Microprocessor Architecture, Programming and Applications with the 8085 Penram International Publishing, Mumbai.- Ramesh S. Gaonakar
- 2. Microcomputer Systems the 8086/8088 family YU-Cheng Liu and Glenn SA Gibson
- 3. Microcontrollers Architecture Programming, Interfacing and System Design

– Raj Kamal Chapter: 15.1, 15.2, 15.3, 15.4.1

4. 8086 and 8088 Microprocessor by Tribel and Avatar Singh

REFERENCES:

- 1. Microprocessors and Interfacing Douglas V. Hall
- 2. Microprocessor and Digital Systems Douglas V. Hall
- 3. Advanced Microprocessors & Microcontrollers B.P.Singh & Renu Singh New Age
- 4. The Intel Microprocessors Architecture, Programming and Interfacing Bary B. Brey.
- 5. Arm Architecture reference manual –Arm ltd.

OUTCOMES:

- The student can gain good knowledge on microprocessor and implement in practical applications
- Design system using memory chips and peripheral chips for 16 bit 8086 microprocessor.
- Understand and devise techniques for faster execution of instructions, improve speed of operations and enhance performance of microprocessors.
- Understand multi core processor and its advantages

ELECTRONICS LAB-IV

MICROPROCESSOR SYSTEMS

LAB LIST:

Programs using Intel 8085 /8086

- 1. Addition and Subtraction (8 bit and 16-bit)
- 2. Multiplication and Division (8-bit)
- 3. Largest number in an array.
- 4. Smallest number in an array.
- 5. BCD to ASCII and ASCII to BCD.
- 6. Program To Convert Two Bcd Numbers In To Hex
- 7. Program To Convert Hex Number In To Bcd Number.
- 8. Program To Find The Square Root Of A Given Number.
- 9. Interfacing Experiments Using 8086 Microprocessor (Demo):
 - 1. Traffic Light Controller
 - 2. Elevator,
 - 3. 7-Segment Display

B.Sc. Electronics CBCS Syllabus 2nd YEAR

IV SEMESTER

Paper: V

MICRO CONTROLLER AND INTERFACING

OBJECTIVES:

- To understand the concepts of microcontroller based system.
- To enable design and programming of microcontroller based system.
- To know about the interfacing Circuits.

<u>UNIT-I</u>: (10Hrs) Introduction, comparison of Microprocessor and micro controller, Evolution of microcontrollers from 4-bit to 32 bit , Development tools for micro controllers, Assembler-Compiler-Simulator/Debugger.

<u>UNIT -II: (</u>10Hrs)

Microcontroller Architecture: Overview and block diagram of 8051, Architecture of 8051, program counter and memory organization, Data types and directives, PSW register, Register banks and stack, pin diagram of 8051, Port organization, Interrupts and timers.

UNIT-III:(10Hrs)

Addressing modes, instruction set of 8051: Addressing modes and accessing memory using various addressing modes, instruction set: Arithmetic, Logical, Simple bit, jump, loop and call instructions and their usage. Time delay generation and calculation, Timer/Counter Programming,

<u>Unit -IV: (</u>15Hrs)

Assemble language programming Examples: Addition, Multiplication, Subtraction, division, arranging a given set of numbers in largest/smallest order.

<u>UNIT-V</u> : (15Hrs)

Interfacing and Application of Microcontroller: Interfacing of – PPI 8255, DAC (0804), Temperature measurement (LM35), interfacing seven segment displays, displaying information on a LCD, control of a stepper Motor (Uni-Polar),

TEXT BOOKS:

1. The 8051 microcontroller and embedded systems using assembly and c-kennet j. Ayalam, Dhananjay V. gadre, cengage publishers

2. The 8051 microcontrollers and Embedded systems - By Muhammad Ali Mazidi and Janice Gillispie Mazidi – Pearson Education Asia, 4th Reprint, 2002.

REFERENCE BOOKS:

- Microcontrollers Architecture Programming, Interfacing and System Design Raj Kamal.
- 2. The 8051 Microcontroller Architecture, Programming and Application Kenneth J. Ajala , west publishing company (ST PAUL, NEW YORK, LOS ANGELES, SAN FRANCISCO).
- 3. Microcontroller theory and application-Ajay V. Deshmukh

OUTCOMES:

- The student can gain good knowledge on microcontrollers and implement in practical applications
- learn Interfacing of Microcontroller
- get familiar with real time operating system

ELECTRONICS LAB-V MICROCONTROLLER LAB

LAB LIST:

- 1. Addition And Subtraction Of Two 8-Bit Numbers.
- 2. Multiplication And Division Of Two 8-Bit Numbers.
- 3. Largest number /smallest in an array.
- 4. Exchange Of Higher And Lower Nibbles In Accumulator.
- 5. Addition Of Two 8-Bit Numbers (Keil Software).
- 6. Addition Of Two 16-Bt Numbers (Keil Software)
- 7. Subtraction Of Two 8-Bit Numbers (Keil Software).
- 8. Subtraction Of Two 16-Bit Numbers (Keil Software).
- 9. Multiplication Of Two 8-Bit Numbers (Keil Software).
- 11. Program For Swapping And Compliment Of 8-Bit Numbers (Keil Software).
- 12. Program To Find The Largest Number In Given Array (Keil Software).
- 13. Program To Find The Smallest Number In Given Array (Keil Software).
- 14. Interfacing Led To 8051 Microcontroller (Keil Software).
- 15. Interfacing Buzzer To 8051 Microcontroller (Keil Software).
- 16. Interfacing Relay To 8051 Microcontroller (Keil Software).
- 17. Interfacing Seven Segments To 8051 Microcontroller (Keil Software).

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar, 6th Battalion Road, Atmakur(V), Mangalagiri(M), Guntur-522 503, Andhra Pradesh **Web**: www.apsche.org **Email**: acapsche@gmail.com

REVISED SYLLABUS OF B.A. /B.Sc. MATHEMATICS UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-2021

PROGRAMME: THREE-YEAR B.A. /B.Sc. MATHEMATICS

 (With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.) For Fifteen Courses of 1, 2, 3 & 4 Semesters)
 (To be Implemented from 2020-21 Academic Year)

A.P. STATE COUNCIL OF HIGHER EDUCATION

B.A./B.Sc. MATHEMATICS

REVISED SYLLABUS FOR CORE COURSES

CBCS/ SEMESTER SYSTEM

(w.e.f. 2020-21 Admitted Batch)

CORE COURSES STRUCTURE

(Sem-I to Sem-IV)

Course	Subject	Hrs.	Credits	IA	ES	Total
Course -I	Differential Equations & Differential Equations Problem Solving Sessions	6	5	25	75	100
Course -II	Three dimensional analytical Solid geometry & Three dimensional analytical Solid Geometry Problem Solving Sessions	6	5	25	75	100
Course -III	Abstract Algebra & Abstract Algebra Problem Solving Sessions	6	5	25	75	100
Course -IV	Real Analysis & Real Analysis Problem Solving Sessions	6	5	25	75	100
Course -V	Linear Algebra & Linear Algebra Problem Solving Sessions	6	5	25	75	100

COURSE-I CBCS/ SEMESTER SYSTEM B.A./B.Sc. MATHEMATICS (w.e.f. 2020-21 Admitted Batch) DIFFERENTIAL EQUATIONS SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

1.Solve linear differential equations

2.Convertnonexact homogeneous equations to exact differential equations by using integrating factors.

- 3.Know the methods of finding solutions of differential equations of the firstorder but not of the firstdegree.
- 4.Solvehigher-order linear differential equations, both homogeneous and non homogeneous, with constant coefficients.
- 5. Understand the concept and apply appropriate methods for solving differential equations.

Course Syllabus:

UNIT – I (12 Hours)

Differential Equations of first order and first degree:

Linear Differential Equations; Differential equations reducible to linear form; Exact differential equations; Integrating factors; Change of variables.

UNIT – II (12 Hours)

Orthogonal Trajectories

Differential Equations of first order but not of the first degree:

Equations solvable for p; Equations solvable for y; Equations solvable for x; Equations that do not contain x (or y); Equations homogeneous in x and y; Equations of the first degree in x and y – Clairaut's Equation.

UNIT – III (12 Hours)

Higher order linear differential equations-I:

Solution of homogeneous linear differential equations of order n with constant coefficients; Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators.General Solution of f(D)y=0.

General Solution of f(D)y=Q when Q is a function of x, $\frac{1}{f(D)}$ is expressed as partial fractions.

P.I. of f(D)y = Q when $Q = be^{ax}$

P.I. of f(D)y = Q when Q is bosinax or b cos ax.

UNIT – IV (12 Hours)

Higher order linear differential equations-II:

Solution of the non-homogeneous linear differential equations with constant coefficients.

P.I. of f(D)y = Q when $Q = bx^k$

P.I. of f(D)y = Q when $Q = e^{ax}V$, where V is a function of x.

P.I. of f(D)y = Q when Q = xV, where V is a function of x.

P.I. of f(D)y = Q when $Q = x^m V$, where V is a function of x.

UNIT -V (12 Hours)

Higher order linear differential equations-III :

Method of variation of parameters; Linear differential Equations with non-constant coefficients; The Cauchy-Euler Equation, Legendre's linear equations, miscellaneous differential equations.

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/ Applications of Differential Equations to Real life Problem /Problem Solving.

Text Book :

Differential Equations and Their Applications by Zafar Ahsan, published by Prentice-Hall of India Pvt. Ltd, New Delhi-Second edition.

Reference Books :

- A text book of Mathematics for B.A/B.Sc, Vol 1, by N. Krishna Murthy & others, published by S.Chand & Company, New Delhi.
- 2. Ordinary and Partial Differential Equations by Dr. M.D,Raisinghania, published by S. Chand & Company, New Delhi.
- 3.Differential Equations with applications and programs S. Balachandra Rao & HR Anuradha-Universities Press.
- 4. Differential Equations -Srinivas Vangala & Madhu Rajesh, published by Spectrum University

Press.

COURSE-II CBCS/ SEMESTER SYSTEM (w.e.f. 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY Syllabus (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. get the knowledge of planes.
- 2. basic idea of lines, sphere and cones.
- 3. understand the properties of planes, lines, spheres and cones.
- 4. express the problems geometrically and then to get the solution.

Course Syllabus:

UNIT - I (12 Hours)

The Plane :

Equation of plane in terms of its intercepts on the axis, Equations of the plane through the given points, Length of the perpendicular from a given point to a given plane, Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection on a plane.

UNIT - II (12 hrs)

The Line :

Equation of a line; Angle between a line and a plane; The condition that a given line may lie in a given plane; The condition that two given lines are coplanar; Number of arbitrary constants in the equations of straight line; Sets of conditions which determine a line; The shortest distance between two lines; The length and equations of the line of shortest distance between two straight lines; Length of the perpendicular from a given point to a given line.

UNIT – III (12 hrs)

The Sphere :

Definition and equation of the sphere; Equation of the sphere through four given points; Plane sections of a sphere; Intersection of two spheres; Equation of a circle; Sphere through a given circle;

Intersection of a sphere and a line; Power of a point; Tangent plane; Plane of contact; Polar plane; Pole of a Plane; Conjugate points; Conjugate planes;

UNIT - IV (12 hrs)

The Sphere and Cones :

Angle of intersection of two spheres; Conditions for two spheres to be orthogonal; Radical plane; Coaxial system of spheres; Simplified from of the equation of two spheres.

Definitions of a cone; vertex; guiding curve; generators; Equation of the cone with a given vertex and guiding curve; equations of cones with vertex at origin are homogenous; Condition that the general equation of the second degree should represent a cone;

UNIT - V (12 hrs)

Cones :

Enveloping cone of a sphere; right circular cone: equation of the right circular cone with a given vertex, axis and semi vertical angle: Condition that a cone may have three mutually perpendicular generators; intersection of a line and a quadric cone; Tangent lines and tangent plane at a point; Condition that a plane may touch a cone; Reciprocal cones; Intersection of two cones with a common vertex.

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/Three dimensional analytical Solid geometry and its applications/ Problem Solving.

Text Book :

Analytical Solid Geometry by Shanti Narayan and P.K. Mittal, published by S. Chand & Company Ltd. 7th Edition.

Reference Books :

- 1. A text book of Mathematics for BA/B.Sc Vol 1, by V Krishna Murthy & Others, published by S. Chand & Company, New Delhi.
- 2. A text Book of Analytical Geometry of Three Dimensions, by P.K. Jain and Khaleel Ahmed, published by Wiley Eastern Ltd., 1999.
- 3. Co-ordinate Geometry of two and three dimensions by P. Balasubrahmanyam, K.Y. Subrahmanyam, G.R. Venkataraman published by Tata-MC Gran-Hill Publishers Company Ltd., New Delhi.
- 4. Solid Geometry by B.Rama Bhupal Reddy, published by Spectrum University Press.

COURSE-III CBCS/ SEMESTER SYSTEM (w.e.f. 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS ABSTRACT ALGEBRA SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

1.acquire the basic knowledge and structure of groups, subgroups and cyclic groups.

- 2. get the significance of the notation of a normal subgroups.
- 3. get the behavior of permutations and operations on them.
- 4. study the homomorphisms and isomorphisms with applications.
- 5.understand the ring theory concepts with the help of knowledge in group theory and to prove the theorems.
- 6. understand the applications of ring theory in various fields.

Course Syllabus:

UNIT – I (12 Hours)

GROUPS:

Binary Operation – Algebraic structure – semi group-monoid – Group definition and elementary properties Finite and Infinite groups – examples – order of a group, Composition tables with examples.

UNIT - II (12 Hours)

SUBGROUPS :

Complex Definition – Multiplication of two complexes Inverse of a complex-Subgroup definition- examples-criterion for a complex to be a subgroups. Criterion for the product of two subgroups to be a subgroup-union and Intersection of subgroups.

Co-sets and Lagrange's Theorem :

Cosets Definition – properties of Cosets–Index of a subgroups of a finite groups–Lagrange's Theorem.

UNIT –III (12 Hours)

NORMAL SUBGROUPS :

Definition of normal subgroup – proper and improper normal subgroup–Hamilton group – criterion for a subgroup to be a normal subgroup – intersection of two normal subgroups – Sub group of index 2 is a normal sub group –quotient group – criteria for the existence of a quotient group.

HOMOMORPHISM :

Definition of homomorphism – Image of homomorphism elementary properties of homomorphism – Isomorphism – automorphism definitions and elementary properties–kernel of a homomorphism – fundamental theorem on Homomorphism and applications.

UNIT - IV (12 Hours)

PERMUTATIONS AND CYCLIC GROUPS :

Definition of permutation – permutation multiplication – Inverse of a permutation – cyclic permutations – transposition – even and odd permutations – Cayley's theorem.

Cyclic Groups :- Definition of cyclic group – elementary properties – classification of cyclic groups.

UNIT - V (12 Hours)

RINGS:

Definition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation laws Rings, Integral Domains, Division Ring and Fields, The characteristic of a ring - The characteristic of an Integral Domain, The characteristic of a Field. Sub Rings, Ideals

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/ Group theory and its applications / Problem Solving.

Text Book:

A text book of Mathematics for B.A. / B.Sc. by B.V.S.S. SARMA and others, published by S.Chand & Company, New Delhi.

Reference Books :

- 1. Abstract Algebra by J.B. Fraleigh, Published by Narosa publishing house.
- 2. Modern Algebra by M.L. Khanna.
- 3. Rings and Linear Algebra by Pundir & Pundir, published by Pragathi Prakashan.

COURSE-IV CBCS/ SEMESTER SYSTEM (w.e.f. 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS REAL ANALYSIS SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to

- 1. get clear idea about the real numbers and real valued functions.
- 2. obtain the skills of analyzing the concepts and applying appropriate methods for testing convergence of a sequence/ series.
- 3. test the continuity and differentiability and Riemann integration of a function.
- 4. know the geometrical interpretation of mean value theorems.

Course Syllabus:

UNIT – I (12 Hours)

REAL NUMBERS :

The algebraic and order properties of R, Absolute value and Real line, Completeness property of R, Applications of supremum property; intervals. (No question is to be set from this portion).

Real Sequences:

Sequences and their limits, Range and Boundedness of Sequences, Limit of a sequence and Convergent sequence. The Cauchy's criterion, properly divergent sequences, Monotone sequences, Necessary and Sufficient condition for Convergence of Monotone Sequence, Limit Point of Sequence, Subsequences and the Bolzano-weierstrass theorem – Cauchy Sequences – Cauchy's general principle of convergence theorem.

UNIT -II (12 Hours)

INFINITIE SERIES :

Series :Introduction to series, convergence of series. Cauchy's general principle of convergence for series tests for convergence of series, Series of Non-Negative Terms.

1. P-test

2. Cauchy's nth root test or Root Test.

3. D'-Alemberts' Test or Ratio Test.

4. Alternating Series – Leibnitz Test.

Absolute convergence and conditional convergence.

UNIT – III (12 Hours)

CONTINUITY :

Limits : Real valued Functions, Boundedness of a function, Limits of functions. Some extensions of the limit concept, Infinite Limits. Limits at infinity. (No question is to be set from this portion).Continuous functions : Continuous functions, Combinations of continuous functions, Continuous Functions on intervals, uniform continuity.

UNIT - IV (12 Hours)

DIFFERENTIATION AND MEAN VALUE THEORMS :

The derivability of a function, on an interval, at a point, Derivability and continuity of a function, Graphical meaning of the Derivative, Mean value Theorems; Rolle's Theorem, Lagrange's Theorem, Cauchy's Mean value Theorem

UNIT - V (12 Hours)

RIEMANN INTEGRATION :

Riemann Integral, Riemann integral functions, Darboux theorem. Necessary and sufficient condition for R – integrability, Properties of integrable functions, Fundamental theorem of integral calculus, integral as the limit of a sum, Mean value Theorems.

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/ Real Analysis and its applications / Problem Solving.

Text Book:

Introduction to Real Analysis by Robert G.Bartle and Donlad R. Sherbert, published by John Wiley.

Reference Books:

- 1.A Text Book of B.Sc Mathematics by B.V.S.S. Sarma and others, published by S. Chand & Company Pvt. Ltd., New Delhi.
- 2.Elements of Real Analysis as per UGC Syllabus by Shanthi Narayan and Dr. M.D. Raisinghania, published by S. Chand & Company Pvt. Ltd., New Delhi.

COURSE-V CBCS/ SEMESTER SYSTEM (w.e.f. 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS LINEAR ALGEBRA SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. understand the concepts of vector spaces, subspaces, basises, dimension and their properties
- 2. understand the concepts of linear transformations and their properties
- 3. apply Cayley- Hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods
- 4. learn the properties of inner product spaces and determine orthogonality in inner product spaces.

Course Syllabus:

UNIT – I (12 Hours)

Vector Spaces-I:

Vector Spaces, General properties of vector spaces, n-dimensional Vectors, addition and scalar multiplication of Vectors, internal and external composition, Null space, Vector subspaces, Algebra of subspaces, Linear Sum of two subspaces, linear combination of Vectors, Linear span Linear independence and Linear dependence of Vectors.

UNIT -II (12 Hours)

Vector Spaces-II:

Basis of Vector space, Finite dimensional Vector spaces, basis extension, co-ordinates, Dimension of a Vector space, Dimension of a subspace, Quotient space and Dimension of Quotient space.

UNIT -III (12 Hours)

Linear Transformations:

Linear transformations, linear operators, Properties of L.T, sum and product of LTs, Algebra of Linear Operators, Range and null space of linear transformation, Rank and Nullity of linear transformations – Rank – Nullity Theorem.

UNIT -IV (12 Hours)

Matrix :

Matrices, Elementary Properties of Matrices, Inverse Matrices, Rank of Matrix, Linear Equations, Characteristic equations, Characteristic Values & Vectors of square matrix, Cayley – Hamilton Theorem.

UNIT -V (12 Hours)

Inner product space :

Inner product spaces, Euclidean and unitary spaces, Norm or length of a Vector, Schwartz inequality, Triangle Inequality, Parallelogram law, Orthogonality, Orthonormal set, complete orthonormal set, Gram – Schmidt orthogonalisation process. Bessel's inequality and Parseval's Identity.

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/ Linear algebra and its applications / Problem Solving.

Text Book:

Linear Algebra by J.N. Sharma and A.R. Vasista, published by Krishna Prakashan Mandir, Meerut- 250002.

Reference Books :

1. Matrices by Shanti Narayana, published by S.Chand Publications.

- 2. Linear Algebra by Kenneth Hoffman and Ray Kunze, published by Pearson Education (low priced edition),New Delhi.
- Linear Algebra by Stephen H. Friedberg et. al. published by Prentice Hall of India Pvt. Ltd. 4th Edition, 2007.

Recommended Question Paper Patterns and Models BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-I, DIFFERENTIAL EQUATIONS

Unit	TOPIC	S.A.Q(including choice)	E.Q(including choice)	Total Marks
Ι	Differential Equations of 1 st order and 1 st degree	2	2	30
п	Orthogonal Trajectories, Differential Equations of 1 st order but not of 1 st degree	2	2	30
ш	Higher Order Linear Differential Equations (with constant coefficients) – I	1	2	25
IV	Higher Order Linear Differential Equations (with constant coefficients) – II	2	2	30
v	Higher Order Linear Differential Equations (with non constant coefficients)	1	2	25
	TOTAL	8	10	140

S.A.Q.	= Short answer questi	ons (5 marks)
E.Q.	= Essay questions	(10 marks)
Short answ	wer questions	: 5 X 5 M = 25 M
Essay que	stions	: 5 X 10 M = 50 M
	Total Marks	= 75 M

.....

CBCS/ SEMESTER SYSTEM (W.e.f 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS COURSE-I, DIFFERENTIAL EQUATIONS

MATHEMATICS MODEL PAPER

Time: 3Hrs

Max.Marks:75M

SECTION - A

Answer any **<u>FIVE</u>** questions. Each question carries <u>FIVE</u> marks5 X 5 M=25 M

- 1. Solve $(1 + e^{x/y}) dx + e^{x/y} (1 \frac{x}{y}) dy = 0.$
- 2. Solve $(y e^{\sin^{-1}x})\frac{dx}{dy} + \sqrt{1 x^2} = 0$
- 3. Solve $y + px = p^2 x^4$.
- 4. Solve (px y)(py + x) = 2p
- 5. Solve $(D^2 3D + 2) = \cosh x$
- 6. Solve $(D^2 4D + 3)y = \sin 3x \cos 2x$.
- 7. Solve $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 13y = 8e^{3x}\sin 2x$.
- 8. Solve $x^2y'' 2x(1+x)y' + 2(1+x)y = x^3$

SECTION - B

Answer <u>ALL</u> the questions. Each question carries <u>TEN</u> marks. 5 X 10 M = 50 M

9 a) Solve $x \frac{dy}{dx} + y = y^2 \log x$. (Or) 9 b) Solve $\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right) dx + \frac{1}{4}(x + xy^2) dy = 0$.

10 a) Solvep² + 2pycotx = y^2 .

(Or)

10 b) Find the orthogonal trajectories of the family of curves $x^{2/3} + y^{2/3} = a^{2/3}$ where 'a' is the parameter.

11 a) Solve $(D^3 + D^2 - D - 1)y = \cos 2x$.

(Or)

11 b) Solve $(D^2 - 3D + 2)y = \sin e^{-x}$.

12 a) Solve $(D^2 - 2D + 4)y = 8(x^2 + e^{2x} + \sin 2x)$ (Or)

12 b)
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = xe^x \sin x$$

13 a) Solve $(D^2 - 2D)y = e^x \sin x$ by the method of variation of parameters.

(Or)

13 b) Solve $3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$

BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-II, THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY

Unit	TOPIC	S.A.Q(including	E.Q(including	Total Marks
Unit	TOPIC	choice)	choice)	
Ι	The Plane	2	2	30
II	The Right Line	2	2	30
III	The Sphere	2	2	30
IV	The Sphere & The Cone	1	2	25
V	The Cone	1	2	25
	TOTAL	8	10	140

S.A.Q.	= Short answer question	ons (5 marks)
E.Q.	= Essay questions	(10 marks)
Short ansv	ver questions	: 5 X 5 M = 25 M
Essay que	stions	: 5 X 10 M = 50 M
	Total Marks	= 75 M

CBCS/ SEMESTER SYSTEM

(w.e.f. 2020-21 Admitted Batch)

B.A./B.Sc. MATHEMATICS

COURSE-II, THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY Time: 3Hrs Max.Marks:75 M

SECTION - A

Answer any <u>FIVE</u> questions. Each question carries <u>FIVE</u> marks 5 X 5 M=25 M

- 1. Find the equation of the plane through the point (-1,3,2) and perpendicular to the planes x+2y+2z=5 and 3x+3y+2z=8.
- 2. Find the bisecting plane of the acute angle between the planes 3x-2y-6z+2=0, -2x+y-2z-2=0.
- 3. Find the image of the point (2,-1,3) in the plane 3x-2y+z=9.
- 4. Show that the lines 2x + y 4 = 0 = y + 2z and x + 3z 4 = 0, 2x + 5z - 8 = 0 are coplanar.
- 5. A variable plane passes through a fixed point (a, b, c). It meets the axes in A,B,C. Show that the centre of the sphere OABC lies on $ax^{-1}+by^{-1}+cz^{-1}=2$.
- Show that the plane 2x-2y+z+12=0 touches the sphere x²+y²+z²-2x-4y+2z-3=0 and find the point of contact.
- 7. Find the equation to the cone which passes through the three coordinate axes and the lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and $\frac{x}{2} = \frac{y}{1} = \frac{z}{1}$
- 8. Find the equation of the enveloping cone of the sphere $x^2 + y^2 + z^2 + 2x 2y = 2$ with its vertex at (1, 1, 1).

SECTION - B

Answer <u>ALL</u> the questions. Each question carries <u>TEN</u> marks. 5 X 10 M = 50 M

9(a) A plane meets the coordinate axes in A, B, C. If the centroid of △ABC is

(a,b,c), show that the equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$.

(OR)

(b) A variable plane is at a constant distance p from the origin and meets the axes

in A,B,C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2}+y^{-2}+z^{-2}=16p^{-2}$.

10(a) Find the shortest distance between the lines

 $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}; \ \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}.$

(OR) (b) Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$; $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. Also

find their point of intersection and the plane containing the lines.

11 (a) Show that the two circles x²+y²+z²-y+2z=0, x-y+z=2;
x²+y²+z²+x-3y+z-5=0, 2x-y+4z-1=0 lie on the same sphere and find its equation.

(OR)

- (b) Find the equation of the sphere which touches the plane 3x+2y-z+2=0at (1,-2,1) and cuts orthogonally the sphere $x^2+y^2+z^2-4x+6y+4=0$.
- 12 (a) Find the limiting points of the coaxial system of spheres $x^2+y^2+z^2-8x+2y-2z+32=0$, $x^2+y^2+z^2-7x+z+23=0$.

(OR)

(b) Find the equation to the cone with vertex is the origin and whose base curve is $x^2+y^2+z^2+2ux+d=0$.

13 (a) Prove that the equation $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$ represents a cone that touches the coordinate planes and find its reciprocal cone.

(OR)

(b) Find the equation of the sphere $x^2+y^2+z^2-2x+4y-1=0$ having its generators parallel to the line x=y=z.

BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-III, ABSTRACT ALGEBRA

Unit	ΤΟΡΙϹ	S.A.Q (including choice)	E.Q(including choice)	Total Marks
Ι	Groups	2	2	30
II	Subgroups, Cosets & Lagrange's theorem	1	2	25
Ш	Normal Subgroups and Homomorphism	1	2	25
IV	Permutations and Cyclic groups	2	2	30
V	Rings	2	2	30
	Total	8	10	140

S.A.Q.	= Short answer questions		(5	marks)
E.Q.	= Essay questions		(10) marks)
Short ansv	ver questions	: 5 X 5	Μ	= 25 M
Essay ques	stions	: 5 X 10) M	= 50 M
			••••	•••••
	Total Marks			= 75 M

CBCS/ SEMESTER SYSTEM (w.e.f. 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS

COURSE-III, ABSTRACT ALGEBRA

Time: 3Hrs

Max.Marks:75M

SECTION - A

Answer any **FIVE** questions. Each question carries **FIVE** marks 5 X 5 M=25 M

1. Show that the set $G = \{x/x = 2^a 3^b \text{ and } a, b \in Z\}$ is a group under multiplication

2. Define order of an element. In a group G, prove that if $a \in G$ then $O(a) = O(a)^{-1}$.

3. If H and K are two subgroups of a group G, then prove that HK is a subgroup ⇔ HK=KH

4.If G is a group and H is a subgroup of index 2 in G then prove that H is a normal subgroup.

5. Examine whether the following permutations are even or odd

i)	$\binom{1}{6}$	2 1	34 43	5 2	67 57	8 8	9) 9,
ii)	$\begin{pmatrix} 1\\ 3 \end{pmatrix}$	2 2	34 45	5 6	67 71)		

6. Prove that a group of prime order is cyclic.

7. Prove that the characteristic of an integral domain is either prime or zero.

8. If F is a field then prove that **{0}** and F are the only ideals of F.

SECTION - B

Answer <u>ALL</u> the questions. Each question carries <u>TEN</u> marks. 5 X 10 M = 50 M

9 a) Show that the set of nth roots of unity forms an abelian group under multiplication.

(Or) 9 b) In a group G, for $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{G}$, O(a)=5, b \neq e and $\boldsymbol{a}\boldsymbol{b}\boldsymbol{a}^{-1} = \boldsymbol{b}^2$. Find O(b).

10 a) The Union of two subgroups is also a subgroup \Leftrightarrow one is contained in the other.

(Or)

b) State and prove Langrage's theorem.

11 a) Prove that a subgroup H of a group G is a normal subgroup of G iff the product of two right cosets of H in G is again a right coset of H in G.

(Or)

11 b) State and prove fundamental theorem of homomorphisms of groups.

12 a) Let S_n be the symmetric group on n symbols and let A_n be the group of even permutations. Then show that A_n is normal in S_n and $O(A_n) = \frac{1}{2}(n!)$

(Or)

12 b)prove thatevery subgroup of cyclic group is cyclic.

13 a) Prove that every finite integral domain is a field.

(Or)

13 b) Define principal idea. Prove that every ideal of Z is a principal ideal.

BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-IV, REAL ANALYSIS

Unit	TOPIC	S.A.Q(including	E.Q(including	Total Marks
		choice)	choice)	
Ι	Real Number System and Real Sequence	2	2	30
II	Infinite Series	1	2	25
III	Limits and Continuity	1	2	25
IV	Differentiation and Mean Value Theorem	2	2	30
V	Riemann Integration	2	2	30
	TOTAL	8	10	140

S.A.Q.	= Short answer ques	tions (5 marks)
E.Q.	= Essay questions	(10 marks)
Short ans	wer questions	: 5 X 5 M = 25 M
Essay que	estions	: 5 X 10 M = 50 M
		•••••

Total Marks	= 75 M
-------------	--------

•••••

CBCS/ SEMESTER SYSTEM (w.e.f. 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS COURSE-IV, REAL ANALYSIS

Time: 3Hrs

Max.Marks:75M

SECTION - A

Answer any <u>FIVE</u> questions. Each question carries <u>FIVE</u> marks 5 X 5 M=25 M

1. Prove that every convergent sequence is bounded.

- 2. Show that $\lim(\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2}) = 0.$
- 3. Test the convergence of the series $\sum_{n=1}^{\infty} (\sqrt[3]{n^3 + 1} n)$.
- 4. Examine for continuity of the function f defined by f(x) = |x| + |x 1| at x=0 and 1.
- 5. Show that $f(x) = x \sin \frac{1}{x}$, $x \neq 0$; f(x) = 0, x = 0 is continuous but not derivable at x=0.

x_0.

- 6. Verify Rolle's theorem for the function $f(x) = x^3 6x^2 + 11x 6$ on [1, 3].
- 7. If $f(x) = x^2 \forall x \in [0, 1]$ and $p = \{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\}$ then find L(p, f) and U(p, f).

8. prove that if $f: [a, b] \rightarrow R$ is continuous on [a, b] then f is R- integrable on [a, b].

SECTION -B

Answer <u>ALL</u> the questions. Each question carries <u>TEN</u> marks. 5 X 10 M = 50 M

9.(a)If
$$\mathbf{s}_n = \mathbf{1} + \frac{1}{2!} + \frac{1}{3!} + \dots + \dots + \frac{1}{n!}$$
 then show that $\{\mathbf{s}_n\}$ converges.
(OR)

(b) State and prove Cauchy's general principle of convergence.

10.(a) State and Prove Cauchy's nth root test.

(b) Test the convergence of
$$\sum \frac{x^n}{x^n + a^n}$$
 ($x > 0, a > 0$).

11.(a) Let f: $R \rightarrow R$ be such that

$$f(x) = \frac{\sin(a+1)x + \sin x}{x} \text{ for } x < 0$$
$$= c \qquad \text{for } x = 0$$
$$= \frac{(x+bx^2)^{1/2} - x^{1/2}}{bx^{3/2}} \text{ for } x > 0$$

Determine the values of a, b, c for which the function f is continuous at x=0.

(OR)

(b) Define uniform continuity, If a function f is continuous on [a b] then f is uniformly continuous on [a b]

12.(a) Using Lagrange's theorem, show that $x > log(1 + x) > \frac{x}{(1+x)} \forall x > 0$.

(OR)

(b) State and prove Cauchy's mean value theorem.

13.(a) State and prove Riemman's necessary and sufficient condition for R- integrability.

(OR)

(b) Prove that
$$\frac{\pi^3}{24} \leq \int_0^{\pi} \frac{x^2}{5+3\cos x} dx \leq \frac{\pi^3}{6}$$
.

BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-V, LINEAR ALGEBRA

Unit	TOPIC	S.A.Q (including choice)	E.Q (including choice)	Marks Allotted
Ι	Vector spaces - I	2	2	30
П	Vector spaces - II	1	2	25
III	Linear Transformation	2	2	30
IV	Char. values and char. vectors	1	2	25
V	Inner product spaces	2	2	30
Total		8	10	140

S.A.Q.	= Short answer quest	tions (5 marks)
E.Q.	= Essay questions	(10 marks)
Short ans	wer questions	: 5 X 5 M = 25 M
Essay que	estions	: 5 X 10 M = 50 M
	Total Marks	= 75 M

CBCS/ SEMESTER SYSTEM (w.e.f. 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS COURSE-V, LINEAR ALGEBRA

Time: 3Hrs

Max.Marks:75M

SECTION - A

Answer any <u>FIVE</u> questions. Each question carries <u>FIVE</u> marks 5 X 5 M=25 M

1. Let p, q, r be fixed elements of a field F. Show that the set W of all triads (x, y, z) of elements of F, such that px+qy+rz=0 is a vector subspace of $V_3(R)$.

2. Define linearly independent & linearly dependent vectors in a vector space. If

 α , β , γ are linearly independent vectors of V(R) then show that $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$ are also linearly independent.

3. Prove that every set of (n + 1) or more vectors in an n dimensional vector space is linearly dependent.

4. The mapping T : $V_3(R) \rightarrow V_3(R)$ is defined by T(x,y,z) = (x-y,x-z). Show that T is a linear transformation.

5. Let $\mathbf{T}: \mathbb{R}^3 \to \mathbb{R}^2$ and $\mathbb{H}: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(x, y, z) = (3x, y+z) and

H (x, y, z)= (2x-z, y). Compute i) T+H ii) 4T-5H iii) TH iv) HT.

6. If the matrix A is non-singular, show that the eigen values of A^{-1} are the reciprocals of the eigen values of A.

7. State and prove parallelogram law in an inner product space V(F).

8. Prove that the set S = $\left\{ \left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right), \left(\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}\right), \left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right) \right\}$ is an orthonormal set in

the inner product space $\mathbb{R}^{3}(\mathbb{R})$ with the standard inner product.

SECTION - B

Answer <u>ALL</u> the questions. Each question carries <u>TEN</u> marks. 5 X 10 M = 50 M

9(a)) Define vector space. Let V (F) be a vector space. Let W be a non empty sub set of V. Prove that the necessary and sufficient condition for W to be a subspace of V is $a, b \in F$ and $\alpha, \beta \in V => a\alpha + b\beta \in W$.

- (b) Prove that the four vectors (1,0,0), (0,1,0), (0,0,1) and (1,1,1) of $V_3(C)$ form linearly dependent set, but any three of them are linearly independent.
- 10(a)Define dimension of a finite dimensional vector space. If W is a subspace of a finite dimensional vector space V(F) then prove that W is finite dimensional and dim $W \le n$.

(OR)

- (b) If W be a subspace of a finite dimensional vector space V(F) then Prove that $\dim \frac{V}{W} = \dim V \dim W$.
- 11(a) Find T (x, y, z) where **T**: **R**³ → **R** is defined by T (1, 1, 1) =3, T (0, 1, -2) =1, T (0, 0, 1) = -2

(OR)

- (b) State and prove Rank Nullity theorem.
- 12(a) Find the eigen values and the corresponding eigen vectors of the matrix
 - $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}.$

(OR)

(b) State and prove Cayley-Hamilton theorem.

13(a) State and prove Schwarz's inequality in an Inner product space V(F).

(OR)

(b) Given $\{(2,1,3), (1,2,3), (1,1,1)\}$ is a basis of $\mathbb{R}^3(\mathbb{R})$.Construct an orthonormal basis using Gram-Schmidt orthogonalisation process.

SUBJECT EXPERTS

Prof. GVR Babu Dept of Mathematics, Andhra University, Visakhapatnam

Dr.K.Chitti Babu, Lecturer in Mathematics, Govt. Degree College, Ramachandrapuram

SYLLABUS VETTED BY

Prof.D.Bharathi, Dept of Mathematics, S V University, Tirupati

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar,6th Battalion Road, Atmakur(V), Mangalagiri(M), Guntur-522 503, Andhra Pradesh **Web**: www.apsche.org **Email**: acapsche@gmail.com

REVISED SYLLABUS OF B.Sc. PHYSICS (FOR MATHEMATICS COMBINATIONS) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-2021

PROGRAMME: THREE-YEAR B.Sc.

(Physics for Mathematics Combinations)

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities &

Model Q.P.)

For Fifteen Courses of 1, 2, 3 & 4 Semesters)

(To be Implemented from 2020-21 Academic Year)

AP STATE COUNCIL OF HIGHER EDUCATION **B.Sc. PHYSICSSYLLABUS UNDER CBCS** [For Mathematics combinations]

w.e.f. 2020-21 (Revised in May 2020)

First Semester

Course I: Mechanics, Waves and Oscillations Practical Course I (Lab-1)

Second Semester

Course II: Wave Optics Practical Course II (Lab-2)

Third Semester

Course III: Heat and Thermodynamics Practical Course III (Lab-3)

Fourth Semester

Course IV: Electricity, Magnetism and Electronics Practical Course IV (Lab- 4)

Course V:Modern Physics Practical Course V (Lab-V)

Year	Semeste r	Cours e	Title of the Course	Marks	No.ofHrs /Week	No.of Credits
I	Ι	Ι	Mechanics, Waves and Oscillations	100	4	03
			Practical Course- I	50	2	02
	II	II	Wave Optics	100	4	03
			Practical Course – II	50	2	02
II	III	III	Heat and Thermodynamics	100	4	03
			Practical Course – III	50	2	02
	IV	IV	Electricity, Magnetism and	100	4	03
			Practical Course – IV	50	2	02
		v	Modern Physics	100	4	03
			Practical Course –V	50	2	02
Total No. of Courses : 05 (Five)						

B.Sc.PHYSICS COURSE STRUCTURE UNDER CBCS

B.Sc. PHYSICS SYLLABUS UNDER CBCS

For Mathematics Combinations

[2020-21 Batch onwards]

I Year B.Sc.-Physics: I Semester

Course I: MECHANICS, WAVES AND OSCILLATIONS

Work load:60 hrs per semester

4 hrs/week

Course outcomes:

On successful completion of this course, the students will be able to:

- Understand Newton's laws of motion and motion of variable mass system and its application to rocket motion and the concepts of impact parameter, scattering cross section.
- Apply the rotational kinematic relations, the principle and working of gyroscope and itapplications and the precessional motion of a freely rotating symmetric top.
- Comprehend the general characteristics of central forces and the application of Kepler's laws to describe the motion of planets and satellite in circular orbit through the study of law of Gravitation.
- Understand postulates of Special theory of relativity and its consequences such as length contraction, time dilation, relativistic mass and mass-energy equivalence.
- Examinephenomena of simple harmonic motionand the distinction between undamped, damped and forced oscillations and the concepts of resonance and quality factor with reference to damped harmonic oscillator.
- Appreciate the formulation of the problem of coupled oscillations and solve them to obtain normal modes of oscillation and their frequencies in simple mechanical systems.
- Figure outthe formation of harmonics and overtones in a stretched string and acquire the knowledge on Ultrasonic waves, their production and detection and their applications in different fields.

UNIT-I:

1. Mechanics of Particles

Review of Newton's Laws of Motion, Motion of variable mass system, Motion of a rocket, Multistage rocket, Concept of impact parameter, scattering cross-section, Rutherford scattering-Derivation.

2. Mechanics of Rigid bodies

Rigid body, rotational kinematic relations, Equation of motion for a rotating body, Angular momentum and Moment of inertia tensor, Euler equations, Precession of a spinning top, Gyroscope, Precession of atom and nucleus in magnetic field, Precession of the equinoxes

Unit-II:

3. Motion in a Central Force Field

Central forces, definition and examples, characteristics of central forces, conservative nature of central forces, Equation of motion under a central force, Kepler's laws of planetary motion-Proofs, Motion of satellites, Basic idea of Global Positioning System (GPS), weightlessness, Physiological effects of astronauts

UNIT-III:

4. Relativistic Mechanics

Introduction to relativity, Frames of reference, Galilean transformations, absolute frames, Michelson-Morley experiment, negative result, Postulates of Special theory of relativity, Lorentz transformation, time dilation, length contraction, variation of mass with velocity, Einstein's mass-energy relation

Unit-IV:

5. Undamped, Damped and Forced oscillations:

Simple harmonic oscillator and solution of the differential equation, Damped harmonic oscillator, Forced harmonic oscillator – Their differential equations and solutions, Resonance, Logarithmic decrement, Relaxation time and Quality factor.

6. Coupled oscillations:

Coupled oscillators-Introduction, Two coupled oscillators, Normal coordinates and Normal modes- N-coupled oscillators and wave equation

(5 hrs)

(7 hrs)

(12hrs)

(12hrs)

(07 hrs)

(05 hrs)

Unit-V:

7. Vibrating Strings:

(07 hrs)

Transverse wave propagation along a stretched string, General solution of wave equation and its significance, Modes of vibration of stretched string clamped at ends, Overtones and Harmonics,Melde's strings.

8. Ultrasonics:

(05 hrs)

Ultrasonics, General Properties of ultrasonic waves, Production of ultrasonics by piezoelectric and magnetostriction methods, Detection of ultrasonics, Applications of ultrasonic waves, SONAR

REFERENCE BOOKS:

- ♦ B. Sc. Physics, Vol.1, Telugu Academy, Hyderabad
- ✤ Fundamentals of Physics Vol. I Resnick, Halliday, Krane ,Wiley India 2007
- College Physics-I. T. Bhimasankaram and G. Prasad. Himalaya Publishing House.
- University Physics-FW Sears, MW Zemansky& HD Young, Narosa Publications, Delhi
- Mechanics, S.G.Venkatachalapathy, Margham Publication, 2003.
- Waves and Oscillations. N. Subramanyam and Brijlal, VikasPulications.
- Unified Physics Waves and Oscillations, Jai PrakashNath&Co.Ltd.
- ♦ Waves & Oscillations. S.Badami, V. Balasubramanian and K.R. Reddy, Orient

Longman.

- * The Physics of Waves and Oscillations, N.K.Bajaj, Tata McGraw Hill
- Science and Technology of Ultrasonics- Baldevraj, Narosa, New Delhi,2004

Practical Course 1: Mechanics, Waves and Oscillations

Work load: 30 hrs per semester

2 hrs/week

Course outcomes (Practicals):

On successful completion of this practical course, the student will be able to;

- Perform experiments on Properties of matter such as the determination of moduli of elasticity viz., Young's modulus, Rigidity modulus of certain materials; Surface tension of water, Coefficient of viscosity of a liquid, Moment of inertia of some regular bodies by different methods and compare the experimental values with the standard values.
- Know how to determine the acceleration due to gravity at a place using Compound pendulum and Simple pendulum.
- Notice the difference between flat resonance and sharp resonance in case of volume resonator and sonometer experiments respectively.
- Verify the laws of transverse vibrations in a stretched string using sonometer and comment on the relation between frequency, length and tension of a stretched string under vibration.
- Demonstrate the formation of stationary waves on a string in Melde's string experiment.
- > Observe the motion of coupled oscillators and normal modes.

Minimum of 6 experiments to be done and recorded:

- 1. Young's modulus of the material of a bar (scale) by uniform bending
- 2. Young's modulus of the material a bar (scale) by non- uniform bending
- 3. Surface tension of a liquid by capillary rise method
- 4. Viscosity of liquid by the flow method (Poiseuille's method)
- 5. Bifilar suspension Moment of inertia of a regular rectangular body.
- 6. Fly-wheel -Determination of moment of inertia
- 7. Rigidity modulus of material of a wire-Dynamic method (Torsional pendulum)
- 8. Volume resonator experiment
- 9. Determination of 'g' by compound/bar pendulum
- 10. Simple pendulum- normal distribution of errors-estimation of time period and the error of the mean by statistical analysis
- 11. Determination of the force constant of a spring by static and dynamic method.

- 12. Coupled oscillators
- 13. Verification of laws of vibrations of stretched string –Sonometer
- 14. Determination of frequency of a bar –Melde's experiment.
- 15. Study of a damped oscillation using the torsional pendulum immersed in liquid-decay constant and damping correction of the amplitude.

RECOMMENDED CO-CURRICULAR ACTIVITIES:

MEASURABLE

- Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- Student seminars (on topics of the syllabus and related aspects (individual activity)
- Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

- Group Discussion
- Visit to Research Stations, Science Museum Centres to understand the basic principles of mechanics with live examples and related industries
- Visit to Satellite launching station at Sri Harikota.

RECOMMENDED ASSESSMENT METHODS

Some of the following suggested assessment methodologies could be adopted;

- The oral and written examinations (Scheduled and surprise tests)
- Problem-solving exercises
- Practical assignments and Observation of practical skills
- Individual and group project reports
- Efficient delivery using seminar presentations
- ✤ Viva voce interviews.

B.Sc. PHYSICS SYLLABUS UNDER CBCS

For Mathematics Combinations [2020-21 Batch onwards] I Year B.Sc.-Physics: II Semester Course-II: WAVE OPTICS

Work load:60 hrs per semester

4 hrs/week

Course outcomes:

On successful completion of this course, the student will be able to:

- Understand the phenomenon of interference of light and its formation in (i) Lloyd's single mirror due to division of wave front and (ii) Thin films, Newton's rings and Michelson interferometer due to division of amplitude.
- Distinguish between Fresnel's diffraction and Fraunhoffer diffraction and observe the diffraction patterns in the case of single slit and the diffraction grating.
- Describe the construction and working of zone plate and make the comparison of zone plate with convex lens.
- Explain the various methods of production of plane, circularly and polarized light and their detection and the concept of optical activity..
- Comprehend the basic principle of laser, the working of He-Ne laser and Ruby lasers and their applications in different fields.
- Explain about the different aberrations in lenses and discuss the methods of minimizing them.
- Understand the basic principles of fibreoptic communication and explore the field of Holography and Nonlinear optics and their applications.

UNIT-I Interference of light: (12hrs)Introduction, Conditions for interference of light, Interference of light by division of wave front and amplitude,Phase change on reflection-Stokes' treatment, Lloyd's single mirror,Interference in thin films: Plane parallel and wedge-shaped films, colours in thin films, Newton's rings in reflected light-Theory and experiment,

Determination of wavelength of monochromatic light, Michelson interferometer and determination of wavelength.

UNIT-II Diffraction of light:(12hrs)

Introduction, Types of diffraction: Fresnel and Fraunhoffer diffractions, Distinction between Fresnel and Fraunhoffer diffraction, Fraunhoffer diffraction at a single slit, Plane diffraction grating, Determination of wavelength of light using diffraction grating, Resolving power of grating, Fresnel's half period zones, Explanation of rectilinear propagation of light, Zone plate, comparison of zone plate with convex lens.

UNIT-III Polarisation of light:(12hrs)

Polarized light: Methods of production of plane polarized light, Double refraction, Brewster's law, Malus law, Nicol prism, Nicol prism as polarizer and analyzer, Quarter wave plate, Half wave plate, Plane, Circularly and Elliptically polarized light-Production and detection, Optical activity, Laurent's half shade polarimeter: determination of specific rotation, Basic principle of LCDs

UNIT-IV Aberrations and Fibre Optics:

(12hrs)

Monochromatic aberrations, Spherical aberration, Methods of minimizing spherical aberration, Coma, Astigmatism and Curvature of field, Distortion; Chromatic aberration-the achromatic doublet; Achromatism for two lenses (i) in contact and (ii) separated by a distance.

Fibre optics: Introduction to Fibers, different types of fibers, rays and modes in an optical fiber, Principles of fiber communication (qualitative treatment only), Advantages of fiber optic communication.

UNIT-V Lasersand Holography:(12hrs)

Lasers: Introduction, Spontaneous emission, stimulated emission, Population Inversion, Laser principle, Einstein coefficients, Types of lasers-He-Ne laser, Ruby laser, Applications of lasers; Holography: Basic principle of holography, Applications of holography

REFERENCE BOOKS:

- BSc Physics, Vol.2, Telugu Akademy, Hyderabad
- A Text Book of Optics-N Subramanyam, L Brijlal, S.Chand& Co.
- Optics-Murugeshan, S.Chand& Co.

- Unified Physics Vol.IIOptics, Jai PrakashNath&Co.Ltd., Meerut
- Optics, F.A. Jenkins and H.G. White, McGraw-Hill
- Optics, AjoyGhatak, TataMcGraw-Hill.
- Introduction of Lasers Avadhanulu, S.Chand& Co.
- Principles of Optics- BK Mathur, Gopala Printing Press, 1995

Practical Course II: Wave Optics

Work load:30hrs

2 hrs/week

Course outcomes (Practicals):

On successful completion of this practical course the student will be able to,

- 1. Gain hands-on experience of using various optical instruments like spectrometer, polarimeterand making finer measurements of wavelength of light using Newton Ringsexperiment, diffraction grating etc.
- 2. Understand the principle of working of polarimeter and the measurement of specific rotatory power of sugar solution
- 3. Know the techniques involved in measuring the resolving power of telescope and dispersive power of the material of the prism.
- 4. Be familiar with the determination of refractive index of liquid by Boy's methodand the determination of thickness of a thin wire by wedge method.

Minimum of 6 experiments to be done and recorded

- 1. Determination of radius of curvature of a given convex lens-Newton's rings.
- 2. Resolving power of grating.
- 3. Study of optical rotation –polarimeter.
- 4. Dispersive power of a prism.
- 5. Determination of wavelength of light using diffraction grating-minimum deviation method.
- 6. Determination of wavelength of light using diffraction grating-normal incidence method.
- 7. Resolving power of a telescope.
- 8. Refractive index of a liquid-hallow prism
- 9. Determination of thickness of a thin wire by wedge method
- 10. Determination of refractive index of liquid-Boy's method.

RECOMMENDED CO-CURRICULAR ACTIVITIES:

MEASURABLE

 Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)

- Student seminars (on topics of the syllabus and related aspects (individual activity)
- Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

- ✤ Group Discussion
- Visit to Research Stations/laboratories and related industries

RECOMMENDED ASSESSMENT METHODS

Some of the following suggested assessment methodologies could be adopted;

- ✤ The oral and written examinations (Scheduled and surprise tests),
- Practical assignments and laboratory reports,
- Efficient delivery using seminar presentations,
- ✤ Viva voce interviews.

B.Sc. PHYSICS SYLLABUS UNDER CBCS

For Mathematics Combinations [2020-21 Batch onwards]

II Year B.Sc.-Physics: III Semester Course-III: HEAT AND THERMODYNAMICS

Work load:60hrs per semester

4 hrs/week

Course outcomes:

On successful completion of this course, the student will be able to:

- Understand the basic aspects of kinetic theory of gases, Maxwell-Boltzman distribution law, equipartition of energies, mean free path of molecular collisions and the transport phenomenon in ideal gases
- Gain knowledge on the basic concepts of thermodynamics, the first and the second law of thermodynamics, the basic principles of refrigeration, the concept of entropy, the thermodynamic potentials and their physical interpretations.
- Understand the working of Carnot's ideal heat engine, Carnot cycle and its efficiency
- Develop critical understanding of concept of Thermodynamic potentials, the formulation of Maxwell's equations and its applications.
- Differentiate between principles and methods to produce low temperature and liquefy air and also understand the practical applications of substances at low temperatures.
- *Examine the nature of black body radiations and the basic theories.*

UNIT-I: Kinetic Theory of gases:

Kinetic Theory of gases-Introduction, Maxwell's law of distribution of molecular velocities (qualitative treatment only) and its experimental verification,Mean free path, Degrees of freedom, Principle of equipartition of energy (Qualitative ideas only), Transport phenomenon in ideal gases: viscosity, Thermal conductivity and diffusion of gases.

UNIT-II: Thermodynamics:

Introduction- Isothermal and Adiabatic processes, Reversible and irreversible processes, Carnot's engine and its efficiency, Carnot's theorem, Thermodynamic scale of temperature

(12hrs)

(12 hrs)

and its identity with perfect gas scale, Second law of thermodynamics: Kelvin's and Clausius statements, Principle of refrigeration, Entropy, Physical significance, Change in entropy in reversible and irreversible processes; Entropy and disorder-Entropy of Universe; Temperature-Entropy (T-S) diagram and its uses ; change of entropy when ice changes into steam.

UNIT-III: Thermodynamic Potentials and Maxwell's equations: (12hrs)

Thermodynamic potentials-Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy and their significance, Derivation of Maxwell's thermodynamic relations from thermodynamic potentials, Applications to (i) Clausius-Clayperon's equation (ii) Value of C_P-C_V (iii) Value of C_P/C_V (iv) Joule-Kelvin coefficient for ideal and Van der Waals' gases

UNIT-IV: Low temperature Physics:

Methods for producing very low temperatures, Joule Kelvin effect, Porous plug experiment, Joule expansion, Distinction between adiabatic and Joule Thomson expansion, Expression for Joule Thomson cooling, Liquefaction of air by Linde's method, Production of low temperatures by adiabatic demagnetization (qualitative), Practical applications of substances at low temperatures.

UNIT-V: Quantum theory of radiation:

Blackbody and its spectral energy distribution of black body radiation, Kirchoff's law, Wein's displacement law, Stefan-Boltzmann's law and Rayleigh-Jean's law (No derivations), Planck's law of black body radiation-Derivation, Deduction of Wein's law and Rayleigh-Jean's law from Planck's law, Solar constant and its determination using Angstrom pyroheliometer, Estimation of surface temperature of Sun.

(12 hrs)

(12hrs)

REFERENCE BOOKS:

- Sc Physics, Vol.2, Telugu Akademy, Hyderabad
- Thermodynamics, R.C.Srivastava, S.K.Saha&AbhayK.Jain, Eastern Economy Edition.
- Unified Physics Vol.2, Optics & Thermodynamics, Jai PrakashNath&Co.Ltd., Meerut
- ✤ Fundamentals of Physics. Halliday/Resnick/Walker.C. Wiley India Edition 2007
- Heat and Thermodynamics -N BrijLal, P Subrahmanyam, S.Chand& Co., 2012
- ♦ Heat and Thermodynamics- MS Yadav, Anmol Publications Pvt. Ltd, 2000
- University Physics, HD Young, MW Zemansky, FW Sears, Narosa Publishers, New Delhi

Practical Course-III: Heat and Thermodynamics

Work load: 30 hrs

2 hrs/week

On successful completion of this practical course, the student will be able to;

Perform some basic experiments in thermal Physics, viz., determinations of Stefan's constant, coefficient of thermal conductivity, variation of thermo-emf of athermocouple with temperature difference at its two junctions, calibration of a thermocouple and Specific heat of a liquid.

Minimum of 6 experiments to be done and recorded

- 1. Specific heat of a liquid –Joule's calorimeter –Barton's radiation correction
- 2. Thermal conductivity of bad conductor-Lee's method
- 3. Thermal conductivity of rubber.
- 4. Measurement of Stefan's constant.
- 5. Specific heat of a liquid by applying Newton's law of cooling correction.
- 6. Heating efficiency of electrical kettle with varying voltages.
- 7. Thermoemf- thermo couple Potentiometer
- 8. Thermal behavior of an electric bulb (filament/torch light bulb)
- 9. Measurement of Stefan's constant- emissive method
- 10. Study of variation of resistance with temperature Thermistor.

RECOMMENDED CO-CURRICULAR ACTIVITIES:

MEASURABLE

- Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- Student seminars (on topics of the syllabus and related aspects (individual activity))
- Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)

Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

- ✤ Group Discussion
- Visit to Research Stations/laboratories and related industries
- ✤ Others

RECOMMENDED ASSESSMENT METHODS

Some of the following suggested assessment methodologies could be adopted;

- ✤ The oral and written examinations (Scheduled and surprise tests),
- Problem-solving exercises,
- Efficient delivery using seminar presentations,
- ✤ Viva voce interviews.

B.Sc. PHYSICS SYLLABUS UNDER CBCS

For Mathematics Combinations

[2020-21 Batch onwards]

II Year B.Sc.-Physics: IV Semester Course-IV: ELECTRICITY, MAGNETISM AND ELECTRONICS

Work load:60 hrs per semester	4 hrs/week

Course outcomes:

On successful completion of this course, the students will be able to:

- Understand the Gauss law and its application to obtain electric field in different cases and formulate the relationship between electric displacement vector, electric polarization, Susceptibility, Permittivity and Dielectric constant.
- Distinguish between the magnetic effect of electric current and electromagnetic induction and apply the related laws in appropriate circumstances.
- Understand Biot and Savart's law and Ampere's circuital law to describe and explain the generation of magnetic fields by electrical currents.
- Develop an understanding on the unification of electric and magnetic fields and Maxwell's equations governing electromagnetic waves.
- Phenomenon of resonance in LCR AC-circuits, sharpness of resonance,Qfactor,Power factor and the comparative study of series and parallel resonant circuits.
- Describe the operation of p-n junction diodes, zener diodes, light emitting diodes and transistors
- Understand the operation of basic logic gates and universal gates and their truth tables.

UNIT-I

1. Electrostatics: (6hrs)

Gauss's law-Statement and its proof, Electric field intensity due to (i) uniformly charged solid sphere and (ii) an infinite conducting sheet of charge, Deduction of Coulomb's law from Gauss law, Electrical potential–Equipotential surfaces, Potential due to a (i) dipole (ii)uniformly charged sphere

2.Dielectrics:

Dielectrics-Polar and Non-polar dielectrics- Effect of electric field on dielectrics, Dielectric strength, Capacitance of a parallel plate condenser with dielectric slab between the plates, Electric displacement D, electric polarization P, Relation between D, E and P, Dielectric constant and electric susceptibility.

UNIT-II

3.Magnetostatics:

Biot-Savart's law and its applications: (i) circular loop and (ii) solenoid, Divergence and curl of magnetic field, Ampere's Circuital Law and its application to Solenoid, Hall effect, determination of Hall coefficient and applications.

4.Electromagnetic Induction:

Faraday's laws of electromagnetic induction, Lenz's law,Self induction and Mutual induction, Self inductance of a long solenoid, Mutual inductance of two coils, Energy stored in magnetic field, Eddy currents and Electromagnetic damping

UNIT-III

5.Alternating currents:

6.Electromagnetic waves-Maxwell's equations:

Alternating current - Relation between current and voltage in LR and CR circuits, Phasor and Vector diagrams, LCR series and parallel resonant circuit, Q –factor, Power in ac circuits, Power factor.

Idea of displacement current, Maxwell's equations-Derivation, Maxwell's wave equation (with derivation), Transverse nature of electromagnetic waves, Poynting theorem (Statement and proof)

(6 hrs)

(6 hrs)

(6 hrs)

(6 hrs)

(6 hrs)

UNIT-IV

7. Basic Electronic devices: (12 hrs)

PN junction diode, Zenerdiode andLight Emitting Diode (LED) and their I-V characteristics, Zener diode as a regulator- Transistors and its operation, CB, CE and CC configurations, Input and output characteristicsofa transistor in CE mode, Relation between alpha, beta and gamma; Hybrid parameters, Determination of hybrid parameters from transistor characteristics; Transistor as an amplifier.

UNIT-V:

8. Digital Electronics: (12 hrs)

Number systems, Conversion of binary to decimal system and vice versa, Binary addition & Binary subtraction (1's and 2's complement methods), Laws of Boolean algebra, DeMorgan's laws-Statements and Proofs, Basic logic gates, NAND and NOR as universal gates, Exclusive-OR gate, Half adder and Full adder circuits.

REFERENCE BOOKS

- Sc Physics, Vol.3, Telugu Akademy, Hyderabad.
- Electricity and Magnetism, D.N. Vasudeva. S. Chand & Co.
- Electricity and Magnetism, B.D.Duggal and C.L.Chhabra. Shobanlal& Co.
- ♦ Electricity, Magnetism with Electronics, K.K.Tewari, R.Chand& Co.,
- Electricity and Magnetism, R.Murugeshan, S. Chand & Co.
- ✤ Principles of Electronics, V.K. Mehta, S.Chand& Co.,
- Digital Principles and Applications, A.P. Malvino and D.P.Leach, McGrawHill Edition.

Practical CourseIV:Electricity, Magnetism and Electronics

Work load: 30 hrs

2 hrs/week

Course outcomes (Practicals):

On successful completion of this practical course the student will be able to;

- > Measure the current sensitivity and figure of merit of a moving coil galvanometer.
- > Observe the resonance condition in LCR series and parallel circuit
- *Learn how a sonometer can be used to determine the frequency of AC-supply.*
- Observe the variation of magnetic field along the axis of a circular coil carrying current using Stewart and Gee's apparatus.
- Understand the operation of PN junction diode, Zener diode and a transistor and their V-I characteristics.
- Construct the basic logic gates, half adder and full adder and verify their truth tables. Further, the student will understand how NAND and NOR gates can be used as universal building blocks.

Minimum of 6 experiments to be done and recorded

- 1. Figure of merit of a moving coil galvanometer.
- 2. LCR circuit series/parallel resonance, Q factor.
- 3. Determination of ac-frequency –Sonometer.
- 4. Verification of Kirchoff's laws and Maximum Power Transfer theorem.
- 5. Field along the axis of a circular coil carrying current-Stewart & Gee's apparatus.
- 6. PN Junction Diode Characteristics
- 7. Zener Diode –V-I Characteristics
- 8. Zener Diode as a voltage regulator
- 9. Transistor CE Characteristics- Determination of hybrid parameters
- 10. Logic Gates- OR, AND, NOT and NAND gates. Verification of Truth Tables.
- 11. Verification of De Morgan's Theorems.
- 12. Construction of Half adder and Full adders-Verification of truth tables

RECOMMENDED CO-CURRICULAR ACTIVITIES:

MEASURABLE

- Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- Student seminars (on topics of the syllabus and related aspects (individual activity))
- Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

- Group Discussion
- Visit to Research Stations/laboratories and related industries
- Others

RECOMMENDED ASSESSMENT METHODS

Some of the following suggested assessment methodologies could be adopted;

- ✤ The oral and written examinations (Scheduled and surprise tests),
- Practical assignments and laboratory reports,
- Observation of practical skills,
- Efficient delivery using seminar presentations,
- ✤ Viva voce interviews.

B.Sc. PHYSICS SYLLABUS UNDER CBCS

For Mathematics Combinations [2020-21 Batch onwards] II Year B.Sc.-Physics: IV Semester Course V: MODERN PHYSICS

Work load:60hrs per semester

4 hrs/week

Course outcomes:

On successful completion of this course, the students will be able to:

- Develop an understanding on the concepts of Atomic and Modern Physics, basic elementary quantum mechanics and nuclear physics.
- Develop critical understanding of concept of Matter waves and Uncertainty principle.
- Get familiarized with the principles of quantum mechanics and the formulation of Schrodinger wave equation and its applications.
- Examine the basic properties of nuclei, characteristics of Nuclear forces, salient features of Nuclear models and different nuclear radiation detectors.
- Classify Elementary particles based on their mass, charge, spin, half life and interaction.
- Get familiarized with the nano materials, their unique properties and applications.
- Increase the awareness and appreciation of superconductors and their practical applications.

UNIT-I:

1. Atomic and Molecular Physics:(12 hrs)

Vector atom model and Stern-Gerlach experiment, Quantum numbers associated with it, Angular momentum of the atom, Coupling schemes, Spectral terms and spectral notations, Selection rules, Intensity rules, Fine structure of Sodium D-lines, Zeeman effect,Experimental arrangement to study Zeeman effect;Raman effect, Characteristics of Raman effect, Experimental arrangement to study Raman effect, Quantum theory of Raman effect, Applications of Raman effect.

UNIT-II:

2. Matter waves&Uncertainty Principle: (12 hrs)

Matter waves, de Broglie's hypothesis, Wave length of matter waves, Properties of matter waves, Davisson and Germer's experiment, Phase and group velocities, Heisenberg's uncertainty principle for position and momentum& energy and time, Illustration of uncertainty principle using diffraction of beam of electrons (Diffraction by a single slit)and photons(Gamma ray microscope),Bohr's principle of complementarity.

UNIT-III:

3. Quantum (Wave) Mechanics:(12 hrs)

Basic postulates of quantum mechanics, Schrodinger time independent and time dependent wave equations-Derivations, Physical interpretation of wave function, Eigen functions, Eigen values, Application of Schrodinger wave equation to (i) one dimensional potential box of infinite height(InfinitePotential Well) and (ii) one dimensional harmonic oscillator

UNIT-IV:

4. Nuclear Physics:(12 hrs)

Nuclear Structure:General Properties of Nuclei, Mass defect, Binding energy; *Nuclear forces*: Characteristics of nuclear forces- Yukawa's meson theory; *Nuclear Models*: Liquid drop model, The Shell model, Magic numbers; *Nuclear Radiation detectors*: G.M. Counter, Cloud chamber, Solid State detector; *Elementary Particles*: Elementary Particles and their classification

UNIT-V:

5. Nano materials:(7hrs)

Nanomaterials – Introduction, Electron confinement, Size effect, Surface to volume ratio, Classification of nano materials– (0D, 1D, 2D); Quantum dots, Nano wires, Fullerene, CNT, Graphene(Mention of structures and properties), Distinct properties of nano materials (Mention-*mechanical, optical, electrical, and magnetic properties*); Mention of applications of

nano materials: (Fuel cells, Phosphors for HD TV, Next Generation Computer chips, elimination of pollutants, sensors)

6. Superconductivity:

(5 hrs)

Introduction to Superconductivity, Experimental results-critical temperature, critical magnetic field, Meissner effect, Isotope effect, Type I and Type II superconductors, BCS theory (elementary ideas only), Applications of superconductors

REFERENCE BOOKS

- Sc Physics, Vol.4, Telugu Akademy, Hyderabad
- ♦ Atomic Physics by J.B. Rajam; S.Chand& Co.,
- Modern Physics by R. Murugeshan and Kiruthiga Siva Prasath. S. Chand & Co.
- Concepts of Modern Physics by Arthur Beiser. Tata McGraw-Hill Edition.
- Nuclear Physics, D.C.Tayal, Himalaya Publishing House.
- S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publ.Co.)
- K.K.Chattopadhyay&A.N.Banerjee, Introd.to Nanoscience and Technology(PHI LearningPriv.Limited).
- Nano materials, A K Bandopadhyay. New Age International Pvt Ltd (2007)
- Textbook of Nanoscience and Nanotechnology, BS Murthy, P Shankar, Baldev Raj,BB Rath

and J Murday-Universities Press-IIM

Practical Course V:Modern Physics

Work load: 30 hrs

2 hrs/week

On successful completion of this practical course, the student will be able to;

- Measure charge of an electron ande/m value of an electron by Thomson method.
- > Understand how the Planck's constant can be determined using Photocell and LEDs.
- Study the absorption of α -rays and β -rays, Range of β -particles and the characteristics of GM counter
- > Determine the Energy gap of a semiconductor using thermistor and junction diode.

Minimum of 6 experiments to be done and recorded

- 1. e/m of an electron by Thomson method.
- 2. Determination of Planck's Constant (photocell).
- 3. Verification of inverse square law of light using photovoltaic cell.
- 4. Determination of the Planck's constant using LEDs of at least 4 different colours.
- 5. Determination of work function of material of filament of directly heated vacuum diode.
- 6. Study of absorption of α -rays.
- 7. Study of absorption of β -rays.
- 8. Determination of Range of β -particles.
- 9. Determination of M & H.
- 10. Analysis of powder X-ray diffraction pattern to determine properties of crystals.
- 11. Energy gap of a semiconductor using junction diode.
- 12. Energy gap of a semiconductor using thermistor
- 13. GM counter characteristics

RECOMMENDED CO-CURRICULAR ACTIVITIES:

MEASURABLE

- Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- Student seminars (on topics of the syllabus and related aspects (individual activity)

- Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

- Group Discussion
- Visit to Research Stations/laboratories and related industries
- ✤ Others

RECOMMENDED ASSESSMENT METHODS

Some of the following suggested assessment methodologies could be adopted;

- ✤ The oral and written examinations (Scheduled and surprise tests),
- Practical assignments and laboratory reports,
- Efficient delivery using seminar presentations,
- ✤ Viva voce interviews.

Note:

- The duration of the examination for each theory course is 3.00 hrs. The duration of each practical examination is 3 hrs with 50 marks
- 2. Each course in theory is of 100 marks and practical course is of 50 marks.
 - Semester End University Examination in Theory Course: 75 marks [External evaluation]
 - Mid-Semester Examination in Theory Course at the college level: 25 marks [Internal evaluation]
- 3. The University (external) examination for Theory and Practical shall be conducted at the end of each Semester.
- In each semester the evaluation in Practical courses shall be done by an external examiner appointed by the University. There shall not be Internal valuation in any semester end practical examinations.
- 5. The candidate shall prepare and submit at the time of practical examination a certified Record based on the practical course with a minimum of **6** experiments from each semester.
- 6. Numerical Problems must be solved at the end of every chapter of all Units.
- Numerical problems, each having a weightage of 4 marks, should be asked in the Semester end University examinations.
- The minimum passing marks in each theory course is 40 (External:30 and Internal:10)
 The minimum passing marks in each Practical/Lab course is 20.
- 9. The teaching work load per week for semesters I to IV is 4 hours for theory course and 2 hours for all laboratory (practical) courses.

- 10. Visits to industry, national research laboratories, and scientific exhibitions should be encouraged.
- 11. The syllabus for Practical courses is same for both Mathematics and Non-Mathematics combinations.
- 12. The marks distribution for the Semester End practical examination is as follows:

	Total Marks :	50
(vi)	Class Records (to be valued at the time of practical	10
(v)	Viva-voce	05
(iv)	Calculations (explicitly shown) + Graph + Result with Units	10
(iii)	Setting up of the experiment and taking readings/Observations	10
(ii)	Diagram/Circuit Diagram / Tabular Columns	10
(<i>i</i>)	Formula/ Principle / Statement with explanation of symbols and	05

B.Sc. PHYSICS

[For Mathematics combinations]

w.e.f. 2020-21 (Revised in May 2020)

MODEL QUESTION PAPER COMMON FOR ALL FIVE THEORY COURSES

Time : 3 hrs

Max marks : 75

SECTION-A

(Essay Type Questions)

Marks: 5x10M = 50M

Answer All questions with internal choice from each Unit

1. Essay type question from Unit-I

Or

Essay type question from Unit-I

2. Essay type question from Unit-II Or

Essay type question from Unit-II

3. Essay type question from Unit-III Or

Essay type question from Unit-III

4. Essay type question from Unit-IV

Or

Essay type question from Unit-IV

5. Essay type question from Unit-V Or

Essay type question from Unit-V

SECTION-B

(Short Answer Type Questions)

Marks: 5x5M = 25M

Answer any five out of the following ten questions

- 6. Short answer type question from Unit-I
- 7. Short answer type question from Unit-I
- 8. Short answer type question from Unit-II
- 9. Short answer type question from Unit-II
- 10. Short answer type question from Unit-III
- 11. Short answer type question from Unit-III
- 12. Short answer type question from Unit-IV
- 13. Short answer type question from Unit-IV
- 14. Short answer type question from Unit-V
- 15. Short answer type question from Unit-V

[Note:Question Paper setters are instructed to add Numerical Problems (each of 4 marks) with a maximum weightage of 16 marks either in Section-A or Section-B covering all the five units in the syllabus]

SUBJECT EXPERTS

Prof.K.T.Rama Krishna Reddy Dept of Physics, S V University, Tirupati

> *Dr.M.Ravi Kumar,* Lecturer in Physics, Govt. Degree College, Ananthapuram

SYLLABUS VETTED BY

Prof.R.Rama Krishna Reddy Dept of Physics, S K University, Anantapur

ANDHRA UNIVERSITY B.A/B.Sc., STATISTICS (WM) CBCS REVISED SYLLABUS 2020-21

Year	Semester	Paper	Subject	IA	EA	Total
1	I	Ι	Descriptive Statistics	25	75	100
	п	II	Probability Theory and Distributions	25	75	100
2	III	III	Statistical Inference	25	75	100
	IV	IV	Sampling Techniques and Design of Experiments	25	75	100
		V	Applied Statistics	25	75	100

OBJECTIVE OF THE COURSE

Statistics is a key to success in the field of science and technology. Today, the students need a thorough knowledge of fundamental basic principles, methods, results and a clear perception of the power of statistical ideas and tools to use them effectively in modeling, interpreting and solving the real life problems. Statistics plays an important role in the context of globalization of Indian economy, modern technology, computer science and information technology.

The main objectives of the course are

- To build the basis for promoting theoretical and application aspects of statistics.
- To underline the statistics as a science of decision making in the real life problems with the description of uncertainty.
- To emphasize the relevance of statistical tools and techniques of analysis in the study of inter-disciplinary sciences.
- To acquaint students with various statistical methods and their applications in different fields.
- To cultivate statistical thinking among students.
- To develop skills in handling complex problems in data analysis and research design.

• To prepare students for future courses having quantitative components.

This course is aimed at preparing the students to hope with the latest developments and compete with students from other universities and put them on the right track.

Paper Wise Objectives

PAPER-I: Descriptive Statistics

- The objective of this paper is to throw light on the role of statistics in different fields with special reference to business and economics.
- It gives the students to review good practice in presentation and the format most applicable to their own data.
- The measures of central tendency or averages reduce the data to a single value which is highly useful for making comparative studies.
- The measures of dispersion throw light on reliability of average and control of variability
- The concept of Correlation and Linear Regression deals with studying the linear relationship between two or more variables, which is needed to analyze the real life problems.
- The attributes gives an idea that how to deal with qualitative data.

PAPER-II: Probability Theory and Distributions

- This paper deals with the situation where there is uncertainty and how to measure that uncertainty by defining the probability, random variable and mathematical expectation which are essential in all research areas.
- This paper gives an idea of using various standard theoretical distributions, their chief characteristics and applications in analyzing any data.

PAPER-III:Statistical Inference

- This paper deals with standard sampling distributions like Chi Square, t and F and their characteristics and applications.
- This paper deals with the different techniques of point estimation for estimating the parameter values of population and interval estimation for population parameters.
- In this paper, various topics of Inferential Statistics such as interval estimation, Testing of Hypothesis, large sample tests (Z-test), small sample tests (t-test, F-test, chi-square test) and non-parametric tests are dealt with. These techniques play an important role in many fields like pharmaceutical, agricultural, medical etc.

PAPER-IV: Sampling Techniques and Design of Experiments

- The sampling techniques deals with the ways and methods that should be used to draw samples to obtain the optimum results, i.e., the maximum information about the characteristics of the population with the available sources at our disposal in terms of time, money and manpower to obtain the best possible estimates of the population parameters
- This paper throw light on understanding the variability between group and within group through Analysis of Variance
- This gives an idea of logical construction of Experimental Design and applications of these designs now days in various research areas.
- Factorial designs allow researchers to look at how multiple factors affect a dependent variable, both independently and together.

PAPER-V: Applied Statistics

- This paper deals the time series on simple description methods of data, explains the variation, forecasting the future values, control procedures.
- It gives an idea of using index numbers in a range of practical situations, limitations and uses
- The vital statistics enlighten the students in obtaining different mortality, fertility rates thus obtaining the population growth rates and construction and use of life tables in actuarial science.

ANDHRA UNIVERSITY B.A/B.Sc., STATISTICS (WM) CBCS REVISED SYLLABUS 2020-21 Semester – I (CBCS With Maths Combination Common to BA/BSc) Paper - I: Descriptive Statistics

UNIT-I

Introduction to Statistics: Importance of Statistics. Scope of Statistics in different fields. Concepts of primary and secondary data. Diagrammatic and graphical representation of data: Histogram, frequency polygon, Ogives, Pie. Measures of Central Tendency: Mean, Median, Mode, Geometric Mean and Harmonic Mean. Median and Mode through graph.

UNIT-II

Measures of Dispersion: Range, Quartile Deviation, Mean Deviation and Standard Deviation, Variance. Central and Non-Central moments and their interrelationship. Sheppard's correction for moments. Skewness and kurtosis.

UNIT-III

Curve fitting: Bi- variate data, Principle of least squares, fitting of degree polynomial. Fitting of straight line, Fitting of Second degree polynomial or parabola, Fitting of power curve and exponential curves.

Correlation: Meaning, Types of Correlation, Measures of Correlation: Scatter diagram, Karl Pearson's Coefficient of Correlation, Rank Correlation Coefficient (with and without ties), Bi-variate frequency distribution, correlation coefficient for bi-variate data and simple problems. Concept of multiple and partial correlation coefficients (three variables only) and properties

UNIT-IV

Regression :Concept of Regression, Linear Regression: Regression lines, Regression coefficients and it's properties, Regressions lines for bi-variate data and simple problems. Correlation vs regression.

UNIT-V

Attributes : Notations, Class, Order of class frequencies, Ultimate class frequencies, Consistency of data, Conditions for consistency of data for 2 and 3 attributes only, Independence of attributes, Association of attributes and its measures, Relationship between association and colligation of attributes, Contingencytable: Square contingency, Mean square contingency, Coefficient of mean square contingency, Tschuprow's coefficient of contingency.

Text Books:

- 1. V.K.Kapoor and S.C.Gupta: Fundamentals of MathematicalStatistics,Sultan Chand & Sons, NewDelhi.
- 2 BA/BSc I year statistics descriptive statistics, probability distribution Telugu Academy - Dr M.JaganmohanRao,DrN.Srinivasa Rao, Dr P.Tirupathi Rao, Smt.D.Vijayalakshmi.
- 3. K.V.S. Sarma: Statistics Made Simple: Do it yourself on PC. PHI

Reference books:

- 1. Willam Feller: Introduction to Probability theory and its applications. Volume –I, Wiley
- 2. Goon AM, Gupta MK, Das Gupta B : Fundamentals of Statistics , Vol-I, the World Press Pvt.Ltd.,Kolakota.
- 3. Hoel P.G: Introduction to mathematical statistics, Asia Publishinghouse.
- 4. M. JaganMohan Rao and Papa Rao: A Text book of StatisticsPaper-I.
- 5. Sanjay Arora and Bansi Lal: New Mathematical Statistics: Satya Prakashan, NewDelhi

Credits 2

<u> Practicals - Paper – I</u>

- 1. Graphical presentation of data (Histogram, frequency polygon, Ogives).
- 2. Diagrammatic presentation of data (Bar and Pie).
- 3. Computation of measures of central tendency(Mean, Median andMode)
- 4. Computation of measures of dispersion(Q.D, M.D andS.D)
- 5. Computation of non-central, central moments, $\beta 1$ and $\beta 2$ for ungroupeddata.
- 6. Computation of non-central, central moments, $\beta 1$ and $\beta 2$ and Sheppard's corrections for groupeddata.
- 7. Computation of Karl Pearson's coefficients of Skewness and Bowley's coefficients of Skewness.
- 8. Fitting of straight line by the method of leastsquares
- 9. Fitting of parabola by the method of leastsquares
- 10. Fitting of power curve of the type by the method of leastsquares.
- 11. Fitting of exponential curve of the type and by the method of leastsquares.
- 12. Computation of correlation coefficient and regression lines for ungroupeddata
- 13. Computation of correlation coefficient, forming regression lines for groupeddata
- 14. Computation of Yule's coefficient of association
- 15. Computation of Pearson's, Tcherprows coefficient of contingency

Note: Training shall be on establishing formulae in Excel cells and derive the results. The excel output shall be exported to MS word for writing inference.

Course Learning Outcomes

Students will acquire

- 1) knowledge of Statistics and its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.
- 2) knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc.
- 3) knowledge of other types of data reflecting quality characteristics including concepts of independence and association between two attributes,
- 4) insights into preliminary exploration of different types of data.
- 5) Knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.

ANDHRA UNIVERSITY B.A/B.Sc., STATISTICS (WM) CBCS REVISED SYLLABUS 2020-21 Semester – II (CBCS With Maths Combination Common to BA/BSc) Paper - II: <u>Probability Theory and Distributions</u>

UNIT-I

Introduction to Probability: Basic Concepts of Probability, random experiments, trial, outcome, sample space, event, mutually exclusive and exhaustive events, equally likely and favourable outcomes. Mathematical, Statistical, axiomatic definitions of probability. Conditional Probability and independence of events, Addition and multiplication theorems of probability for 2 and for n events. Boole's inequality and Baye's theorem and its applications in real life problems.

UNIT-II

Random variable: Definition of random variable, discrete and continuous random variables, functions of random variable. Probability mass function. Probability density function, Distribution function and its properties. For given pmf, pdf calculation of moments, coefficient of skewness and kurtosis. Bivariate random variable - meaning, joint, marginal and conditional Distributions, independence of random variables and simple problems.

UNIT- III

Mathematical expectation : Mathematical expectation of a random variable and function of a random variable. Moments and covariance using mathematical expectation with examples. Addition and Multiplication theorems on expectation. Definitions of M.G.F, C.G.F, P.G.F, C.F and their properties. Chebyshev and Cauchy - Schwartz inequalities.

UNIT-IV

Discrete Distributions: Binomial, Poisson, Negative Binomial, Geometric distributions: Definitions, means, variances, M.G.F, C.F, C.G.F, P.G.F, additive property if exists. Possion approximation to Binomial distribution. Hyper-geometric distribution: Defination, mean and variance.

UNIT - V

Continuous Distributions: Rectangular, Exponential, Gamma, Beta Distributions: mean, variance, M.G.F, C.G.F, C.F. **Normal Distribution**: Definition, Importance, Properties, M.G.F, CF, additive property.

Text Books:

- 1. V.K.Kapoor and S.C.Gupta: Fundamentals of MathematicalStatistics,Sultan Chand & Sons, NewDelhi.
- 2 BA/BSc I year statistics descriptive statistics, probability distribution Telugu Academy - Dr M.JaganmohanRao,DrN.Srinivasa Rao, Dr P.Tirupathi Rao, Smt.D.Vijayalakshmi.
- 3. K.V.S. Sarma: Statistics Made Simple: Do it yourself on PC. PHI

Reference books:

- 1. Willam Feller: Introduction to Probability theory and its applications. Volume –I, Wiley
- 2. Goon AM, Gupta MK, Das Gupta B : Fundamentals of Statistics , Vol-I, the World Press Pvt.Ltd.,Kolakota.

- 3. Hoel P.G: Introduction to mathematical statistics, Asia Publishinghouse.
- 4. M. JaganMohan Rao and Papa Rao: A Text book of StatisticsPaper-I.
- 5. Sanjay Arora and Bansi Lal: New Mathematical Statistics: Satya Prakashan , NewDelhi
- 6. Hogg Tanis Rao: Probability and Statistical Inference. 7thedition.Pearson.

Credits 2

<u> Practicals Paper – II</u>

- 1. Fitting of Binomial distribution Directmethod.
- 2. Fitting of binomial distribution Recurrence relationMethod.
- 3. Fitting of Poisson distribution Directmethod.
- 4. Fitting of Poisson distribution Recurrence relationMethod.
- 5. Fitting of Negative Binomialdistribution.
- 6. Fitting of Geometric distribution.
- 7. Fitting of Normal distribution Areasmethod.
- 8. Fitting of Normal distribution Ordinatesmethod.
- 9. Fitting of Exponential distribution.

Note: Training shall be on establishing formulae in Excel cells and derive the results. The excel output shall be exported to MS word for writing inference.

Course Learning Outcomes

Students will acquire

- 1) ability to distinguish between random and non-random experiments,
- knowledge to conceptualize the probabilities of events including frequentist and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem,
- 3) knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments,
- 4) knowledge of important discrete and continuous distributions such as Binomial, Poisson, Geometric, Negative Binomial and Hyper-geometric, normal, uniform, exponential, beta and gamma distributions,
- (e) acumen to apply standard discrete and continuous probability distributions to different situations.

ANDHRA UNIVERSITY B.A/B.Sc., STATISTICS (WM) CBCS REVISED SYLLABUS 2020-21 Semester – III (CBCS With Maths Combination Common to BA/BSc) Paper - III: Statistical Inference

UNIT-I

Concepts: Population, Sample, Parameter, statistic, Sampling distribution, Standard error. convergence in probability and convergence in distribution, law of large numbers, central limit theorem (statements only). Student's t- distribution, F - Distribution, χ^2 -Distribution: Definitions, properties and their applications.

UNIT-II

Theory of estimation: Estimation of a parameter, criteria of a good estimator – unbiasedness, consistency, efficiency, &sufficiency and. Statement of Neyman's factorization theorem. Estimation of parameters by the method of moments and maximum likelihood (M.L), properties of MLE's. Binomial, Poisson &Normal Population parameters estimate by MLE method. Confidence Intervals.

UNIT-III

Testing of Hypothesis:Concepts of statistical hypotheses, null and alternative hypothesis, critical region, two types of errors, level of significance and power of a test. One and two tailed tests. Neyman-Pearson's lemma. Examples in case of Binomial, Poisson, Exponential and Normal distributions.

$\mathbf{UNIT} - \mathbf{IV}$

Large sample Tests: large sample test for single mean and difference of two means, confidence intervals for mean(s). Large sample test for single proportion, difference of proportions. standard deviation(s) and correlation coefficient(s).

<u>SmallSampletests:</u>t-testforsinglemean,differenceofmeansandpairedt-test. χ 2-testforgoodness of fit and independence of attributes. F-test for equality ofvariances.

$\mathbf{UNIT} - \mathbf{V}$

<u>Non-parametric tests</u>- their advantages and disadvantages, comparison with parametric tests. Measurement scale- nominal, ordinal, interval and ratio. One sample runs test, sign test and Wilcoxonsigned rank tests (single and paired samples). Two independent sample tests: Median test, Wilcoxon – Mann-Whitney U test, Wald Wolfowitz's runs test.

TEXT BOOKS

1. BA/BSc II year statistics - statistical methods and inference - Telugu Academy by A.Mohanrao, N.Srinivasa Rao, Dr R.Sudhakar Reddy, Dr T.C. RavichandraKumar.

2. K.V.S. Sarma: Statistics Made Simple: Do it yourself on PC.PHI.

REFERENCE BOOKS:

- 1. Fundamentals of Mathematics statistics : VK Kapoor and SCGuptha.
- 2. Outlines of statistics, Vol II: Goon Guptha, M.K.Guptha, Das GupthaB.
- 3. Introduction to Mathematical Statistics :HoelP.G.
- 4. Hogg Tanis Rao: Probability and Statistical Inference. 7thedition.Pearson.

Credits: 2

Practicals - Paper –III

- 1. Large sample test for singlemean
- 2. Large sample test for difference of means
- 3. Large sample test for singleproportion
- 4. Large sample test for difference of proportions
- 5. Large sample test for difference of standarddeviations
- 6. Large sample test for correlationcoefficient
- 7. Small sample test for singlemean
- 8. Small sample test for difference of means
- 9. Small sample test for correlationcoefficient
- 10. Paired t-test(pairedsamples).
- 11. Small sample test for single variance($\chi 2$ test)
- 12. Small sample test for difference of variances(F-test)
- 13. $\chi\,2$ test for goodness of fit and independence of attributes
- 14. Nonparametric tests for single sample(run test, sign test and Wilcoxon signed ranktest)
- 15. Nonparametric tests for related samples (sign test and Wilcoxon signed ranktest)
- 16. Nonparametric tests for two independent samples (Median test, Wilcoxon –Mann- Whitney U test, Wald Wolfowitz' s runstest)

Note: Training shall be on establishing formulae in Excel cells and deriving the results. The excel output shall be exported to MS Word for writinginferences.

Course Learning Outcomes

The students will acquire

- 1) Concept of law large numbers and their uses
- 2) Concept of central limit theorem and its uses in statistics
- 3) concept of random sample from a distribution, sampling distribution of a statistic, standard error of important estimates such as mean and proportions,
- 4) knowledge about important inferential aspects such as point estimation, test of hypotheses and associated concepts,
- 5) knowledge about inferences from Binomial, Poisson and Normal distributions as illustrations,
- 6) concept about non-parametric method and some important non-parametric tests.

ANDHRA UNIVERSITY

B.A/B.Sc., STATISTICS (WM) CBCS REVISED SYLLABUS 2020-21 Semester – IV (CBCS With Maths Combination Common to BA/BSc) Paper IV: Sampling Techniques and Designs of Experiments

UNIT I

Simple Random Sampling (with and without replacement): Notations and terminology, various probabilities of selection. Random numbers tables and its uses. Methods of selecting simple random sample, lottery method, method based on random numbers. Estimates of population total, mean and their variances and standard errors, determination of sample size, simple random sampling of attributes.

UNIT II

Stratified random sampling: Stratified random sampling, Advantages and Disadvantages of Stratified Random sampling, Estimation of population mean, and its variance. Stratified random sampling with proportional and optimum allocations. Comparison between proportional and optimum allocations with SRSWOR.

Systematic sampling: Systematic sampling definition when N = nk and merits and demerits of systematic sampling - estimate of mean and its variance. Comparison of systematic sampling with Stratified and SRSWOR.

UNIT III

Analysis of variance :Analysis of variance(ANOVA) –Definition and assumptions. One-way with equal and unequal classification, Two way classification.

Design of Experiments: Definition, Principles of design of experiments, CRD: Layout, advantages and disadvantage and Statistical analysis of Completely Randomized Design(C.R.D).

UNIT IV

Randomized Block Design (R.B.D) and Latin Square Design (L.S.D) with their layouts and Analysis, MissingplottechniqueinRBDandLSD.EfficiencyRBDoverCRD,EfficiencyofLSDoverRBDand CRD.

UNIT V

Factorial experiments – Main effects and interaction effects of 2^2 and 2^3 factorial experiments and their Statistical analysis. Yates procedure to find factorial effecttotals.

Text Books:

1. Telugu AcademyBA/BSc III year paper - III Statistics - applied statistics - Telugu

academy by Prof.K.Srinivasa Rao, Dr D.Giri. Dr A.Anand, Dr V.PapaiahSastry.

2. K.V.S. Sarma: Statistics Made Simple: Do it yourself on PC.PHI.

Reference Books:

- 1. Fundamentals of applied statistics : VK Kapoor and SCGupta.
- 2. Indian Official statistics MR Saluja.
- 3. Anuvarthita SankyakaSastram TeluguAcademy.

Credits: 2

Practicals - Paper -IV

Sampling Techniques:

Estimation of population mean and its variance by

- 1. Simple random sampling with and without replacement. Comparison between SRSWRand SRSWOR.
- 2. Stratified random sampling with proportional and optimum allocations. Comparison between proportional and optimum allocations with SRSWOR.
- 3. Systematic sampling with N=nk. Comparison of systematic sampling with Stratified andSRSWOR. **Design of Experiments:**
- 4. ANOVA one way classification with equal and unequal number of observations
- 5. ANOVA Two-way classification with equal number of observations.
- 6. Analysis of CRD.
- 7. Analysis of RBD Comparison of relative efficiency of CRD with RBD
- 8. Estimation of single missing observation in RBD and itsanalysis
- 9. Analysis of LSD and efficiency of LSD over CRD and RBD
- 10. Estimation of single missing observation in LSD and itsanalysis
- 11. Analysis of 2^2 with RBD layout
- 12. Analysis of 2^3 with RBDlayout

Note: Training shall be on establishing formulae in Excel cells and deriving the results. The excel output shall be exported to MS Word for writinginferences.

Course Learning Outcomes

The students shall get

- 1) Introduced to various statistical sampling schemes such as simple, stratified and systematic sampling.
- 2) an idea of conducting the sample surveys and selecting appropriate sampling techniques,
- 3) Knowledge about comparing various sampling techniques.
- 4) carry out one way and two way Analysis of Variance,
- 5) understand the basic terms used in design of experiments,
- 6) use appropriate experimental designs to analyze the experimental data.

ANDHRA UNIVERSITY B.A/B.Sc., STATISTICS (WM) CBCS REVISED SYLLABUS 2020-21 Semester – II to IV (CBCS With Maths Combination Common to BA/BSc) <u>Paper V: Applied Statistics</u>

UNIT I

Time Series:Time Series and its components with illustrations, additive, multiplicativemodels. Trend: Estimation of trend by free hand curve method, method of semi averages.Determination of trend by least squares (Linear trend, parabolic trend only), moving averages method.

UNIT II

Seasonal Component: Determination of seasonal indices by simple averages method, ratio to moving average, Ratio to trend and Link relative methods, Deseasonalization.

UNIT III

Growth curves: Modified exponential curve, Logistic curve and Grompertz curve, fitting of growth curves by the method of three selected points and partial sums.Detrending. Effect of elimination of trend on other components of the time series

UNIT IV

Index numbers:Concept, construction, problems involved in the construction of index numbers, uses and limitations. Simple and weighted index numbers. Laspayer's, Paasche's and Fisher's index numbers, Criterion of a good index number, Fisher's ideal index numbers. Cost of living index number and wholesale price index number.

UNIT V

Vital Statistics: Introduction, definition and uses of vital statistics, sources of vital statistics.

Measures of different Mortality and Fertility rates, Measurement of population growth. Life tables: construction and uses of life tables.

Text Books:

- 1. Fundamentals of applied statistics : VK Kapoor and SCGupta.
- 2. BA/BSc III year paper III Statistics applied statistics Telugu academy by prof.K.Srinivasa Rao, Dr D.Giri. Dr A.Anand, Dr V.PapaiahSastry.

Reference Books:

- 3. AnuvarthitaSankyakaSastram TeluguAcademy.
- 4. Mukopadhyay, P (2011). Applied Statistics, 2nd ed. Revised reprint, Books and Allied Pvt. Ltd.
- 5. Brockwell, P.J. and Devis, R.A. (2003). Introduction to Time Series Analysis. Springer.
- 6. Chatfield, C. (2001). Time Series Forecasting., Chapman & Hall.
- 7. Srinivasan, K. (1998). Demographic Techniques and Applications. Sage Publications
- 8. Srivastava O.S. (1983). A Text Book of Demography. Vikas Publishing House

Practical Paper -V

Time Series:

- 1. Measurement of trend by method of moving averages(odd and evenperiod)
- 2. Measurement of trend by method of Least squares(linear andparabola)
- 3. Determination of seasonal indices by method simpleaverages
- 4. Determination of seasonal indices by method of Ratio to movingaverages
- 5. Determination of seasonal indices by method of Ratio totrend
- 6. Determination of seasonal indices by method of Linkrelatives

Index Numbers:

- 7. Computation of simple indexnumbers.
- 8. Computation of all weighted index numbers.
- 9. Computation of reversaltests.

Vital Statistics:

- 10. Computation of various Mortalityrates
- 11. Computation of various Fertilityrates
- 12. Computation of various Reproductionrates.
- 13. Construction of LifeTables

Note: Training shall be on establishing formulae in Excel cells and deriving the results. The excel output shall be exported to MS Word for writing inferences.

Course Learning Outcomes

After completion of this course, the students will know about

- 1) time series data, its applications to various fields and components of time series,
- 2) fitting and plotting of various growth curves such as modified exponential, Gompertz and logistic curve,
- 3) fitting of trend by Moving Average method,
- 4) measurement of Seasonal Indices by Ratio-to-Trend, Ratio-to-Moving Average and Link Relative methods,
- 5) Applications to real data by means of laboratory assignments.
- 6) Interpret and use a range of index numbers commonly used in the business sector
- 7) Perform calculations involving simple and weighted index numbers
- 8) Understand the basic structure of the consumer price index and perform calculations involving its use
- 9) Various data collection methods enabling to have a better insight in policy making, planning and systematic implementation,
- 10) Construction and implementation of life tables,
- 11) Population growth curves, population estimates and projections,
- 12) Real data implementation of various demographic concepts as outlined above through practical assignments.

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd, 4th and 5th floors, Neeladri Towers, Sri Ram Nagar, 6th Battalion Road, Atmakur(V), Mangalagiri(M), Guntur-522 503, Andhra Pradesh Web: www.apsche.org Email: acapsche@gmail.com

REVISED SYLLABUS OF B.Sc. (ZOOLOGY) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-21

PROGRAMME: THREE-YEAR B.Sc.

(Zoology)

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities &

Model Q.P.) For Fifteen Courses of 1, 2, 3 & 4 Semesters) (To be Implemented from 2020-21 Academic Year)

Structure of ZOOLOGY Syllabus

(Under CBCS for 3-year B.Sc. Programme)

(With domain subject covered during the first 4 Semesters with 5 Courses)

	SEM	PAPER	TITLE	MARKS (100)		
YEAR				MID	END	CREDITS
				SEMESTER	SEMESTER	
I	Ι	I	Animal Diversity – I	25	75	04
			Biology of Non-Chordates			04
			Practical - I	25	75	01
	II	II	Animal Diversity – II	25	75	04
			Biology of Chordates			
			Practical - II	25	75	01
	III	III	Cell biology, Genetics,			
			Molecular Biology &	25	75	04
			Evolution			
II			Practical - III	25	75	01
	IV	IV	Physiology, Cellular	25	75	04
			Metabolism & Embryology			
			Practical - IV	25	75	01
			Immunology & Animal	25	75	04
		V	Biotechnology	20	10	
			Practical - V	25	75	01

PROGRAMME: THREE-YEAR B.Sc. (With Chemistry, Botany and Zoology Disciplines)

As per the **National Education Policy**, **2019 the outcomes of Higher Education** include increased critical thinking abilities, higher order thinking and deeper learning, mastery of content, problem solving, team work and communication skills besides general engagement and enjoyment of learning including systematic research in India.

The overall objectives of the learning outcomes-based curriculum framework are to:

- □ Help formulate graduate attributes, qualification descriptors, programme learning outcomes and course learning outcomes that are expected to be demonstrated by the holder of a qualification;
- □ Enable prospective students, parents, employers and others to understand the nature and level of learning outcomes (knowledge, skills, attitudes and values) or attributes a graduate of a programme should be capable of demonstrating on successful completion of the programme of study.

Programme Educational Objectives (PEOs):

PEO1Higher Education: Empower students to pursue higher studies in various fields of Biology and Chemistry.

PEO2Career:Enable students to pursue careers in Chemical,Biological and related fields as demonstrated by professional success at positions within industry, government, or academia. **PEO3Social responsibility**: Enable students to exhibit professionalism, ethical attitude, communication skills and team work in their profession.

Program Outcomes (POs):

The Learning Outcomes of the programme could be in consonance with the Bloom's Taxonomy, which includes –

- 1. Remember (Lower order)
- 2. Understand (Lower Order)
- 3. Apply (Lower Order)
- 4. Analyze (Higher Order)

- 5. Evaluate& Problem Solving (Higher Order)
- 6. Create (Higher Order)

PO1Critical thinking: Able to understand and utilize the principles of scientific enquiry, think analytically, clearly and evaluate critically while solving problems and making decisions during biological study.

PO2Effective communication: Able to formally communicate Scientific ideas and investigations of the biology discipline to othersusing both oral and written communication skills.

PO3Social interaction: Able to develop individual behaviourandinfluence society and social structure.

PO4Effective citizenship: Able to work with a sense of responsibility towards social awareness and follow the ethical standards in the society.

PO5Ethics: Ability to demonstrate and discuss ethical conduct in scientific activities.

PO6Environment and Sustainability: Able to understand the impact of biological science in societal and environmental contexts and demonstrate the knowledge for sustainable development.

PO7Self-directed and life-long learning: Able to recognize the need of life-long learning and engage in research and self-education.

Domain Subject: ZOOLOGY

(Syllabus with Outcomes, Co-curricular Activities, References & Model Q.P forFive Courses of 1, 2, 3, 4 & 5 Semesters)

"The domain subject "Zoology", embracing the fields of Animal diversity, Cell biology, Genetics, evolution, Animal physiology, Biochemistry, Embryology, Immunology, Molecular biology and Ecology gives the student a broad understanding of faunal diversity, various life processes involved in the development of an animal, its functioning, its response to environmental stimuli, molecular basis of life, new technological approach towards life, an insight for the lecturer into research and responsibility of the student towards environment".

GENERAL CURRICULAR ACTIVITIES

> Lecturer-based:

- Class-room activities: Organization of Group discussions, question-answer sessions, scientific observations, use of audio-visual aids, guidance programmes, examination and evaluation work (scheduled and surprise tests), quizzes, preparation of question banks, student study material, material for PG entrance examinations etc.
- 2) Library activities: Reading books and magazines taking notes from prescribed and reference books and preparation of notes on lessons as per the syllabus; Reading journals and periodicals pertaining to different subjects of study; Making files of news-paper cuttings etc.
- Lab activities: Organization of practicals, maintenance of lab attendance registers/log registers, maintenance of glassware and chemicals
- 4) Activities in the Seminars, workshops and conferences: Organization of at least one seminar/workshop/conference per academic year either on academic/research aspects and inculcate research spirit among students
- 5) Research activities: Student study projects (General / RBPT model), Minor or Major research projects, Research guidance to research scholars, Publication of research articles/papers (at least one in 2 years) in UGC-recognized journals, Registration in Vidwan/Orcid/Scopus/Web of Science
- 6) Smart Classroom Activities: Organization of Departmental WhatsApp groups, Ed Modo groups/Google Class Rooms/Adobe Spark groups for quick delivery of the subject; Preparation of Moocs content & presentation tube lessons by trained lecturers; Using smart/digital/e- class rooms (mandarory) wherever present; Utilization of youtube videos (subject to copy rights) etc.

> Student-based:

- 1) Class-room activities: Power point presentations, seminars, assignments
- 2) Library activities: Visit to library during library hour and preparation of notes
- 3) Lab activities: Maintenance of observation note book and record, keeping lab clean and tidy
- 4) Activities in the Seminars, workshops and conferences: Participation/presentation in seminar/workshop/conference

CO-CURRICULAR ACTIVITES

OBJECTIVES:

The co-curricular activities are aimed at strengthening the theoretical knowledge with an activity related to the content taught in the class room. The aesthetic development, character building, spiritual growth, physical growth, moral values, creativity of the student.

The different types of co-curricular activities relevant to Zoology domain are listed below:

- Academic based
 - Preparation of Charts/Clay or Thermocol Models
 - Debates, Essay Writing Competitions
 - Group Discussions
 - Departmental (Zoology) magazine
 - Formation of Book clubs
 - Animal album-making
 - Viva-Voce

Lab/Research –based

- Digital dissections
- Field Visit/Excursions/Zoological Tours and submission of report
- Training at research centres (aquaculture/apiculture/sericulture etc.)
- Exposure to scientific instruments and hands-on experience
- Value based
 - Organization of first-aid camp, swachhbharat, cleanliness week, girl-child importance, Nutrition and health awareness etc.

World Cancer Day (February 4 th)	International Biological Diversity Day (May 22 nd)	
Darwin Day (February 12 th)	World Turtle Day (May 23 rd)	
National Science Day (Feb 28 th)	World blood Donor Day (June 14 th)	
World Wildlife day (March 3 rd)	World Zoonoses Day (July 6 th)	
National Vaccination Day (March 16 th)	World Mosquito Day (August 20 th)	
World Health Day (April 7 th)	World Turtle Day (May 23 rd)	
Earth Day (April 22 nd)	World Mosquito Day (August 20 th)	
Malaria Day (April 25 th)	World Animal day (October 4 th)	
World Hepatitis Day (May 19th)	World Immunization Day (November 10 th)	

AP STATE COUNCIL OF HIGHER EDUCATION

w.e.f. 2020-21 (Revised in April, 2020)

ZOOLOGY – SEMESTER I

PAPER – I: ANIMAL DIVERSITY – BIOLOGY OF NONCHORDATES

HOURS: 60 (5X12)

Max. Marks: 100

Course Outcomes: By the completion of the course the graduate should able to -

- CO1 Describe general taxonomic rules on animal classification
- CO2 Classify Protozoa toCoelenterata with taxonomic keys
- **CO3** Classify Phylum Platy hemninthes to Annelida phylum using examples from parasitic adaptation and vermin composting
- **CO4** Describe Phylum Arthropoda to Mollusca using examples and importance of insects and Molluscans
- **CO5** Describe Echinodermata to Hemi chordata with suitable examples and larval stages in relation to the phylogeny

Learning objectives

- 1. To understand the taxonomic position of protozoa to helminthes.
- 2. To understand the general characteristics of animals belonging to protozoa to hemichordata.
- 3. To understand the structural organization of animals phylum from protozoa to hemichordata.
- 4. To understand the origin and evolutionary relationship of different phyla from protozoa to hemichordata.
- 5. To understand the origin and evolutionary relationship of different phylum from annelids to hemichordates.

ZOOLOGY SYLLABUS FOR I SEMESTER

PAPER - I: ANIMAL DIVERSITY - BIOLOGY OF NONCHORDATES

HOURS:60 (5X12)

Max. Marks: 100

UNIT I

- 1.1 Principles of Taxonomy Binomial nomenclature Rules of nomenclature
- 1.2 Whittaker's five kingdom concept and classification of Animal Kingdom.

Phylum Protozoa

- 1.3 General Characters and classification of protozoa up to classes with suitable examples
- 1.4 Locomotion, nutrition and reproduction in Protozoans
- 1.5 *Elphidium* (type study)

UNIT –II

PhylumPorifera

- 2.1 General characters and classification up to classes with suitable examples
- 2.2 Skelton in Sponges
- 2.3 Canal system in sponges

PhylumCoelenterata

- 2.4 General characters and classification up to classes with suitable examples
- 2.5 Metagenesisin Obelia
- 2.6 Polymorphism in coelenterates
- 2.7 Corals and coral reefs

PhylumCtenophora :

2.8 General Characters and Evolutionary significance(affinities)

Unit – III

PhylumPlatyhelminthes

- 3.1 General characters and classification up to classes with suitable examples
- 3.2 Life cycle and pathogenecity of *Fasciola hepatica*

3.3 Parasitic Adaptations in helminthes

Phylum Nemathelminthes

- 3.4 General characters and classification up to classes with suitable examples
- 3.5. Life cycle and pathogenecity of Ascarislumbricoides

Unit – IV

Phylum Annelida

- 4.1 General characters and classification up to classes with suitable examples
- 4.2 Evolution of Coelom and Coelomoducts
- 4.3 Vermiculture Scope, significance, earthworm species, processing, Vermicompost, economic importance of vermicompost

Phylum Arthropoda

- 4.4 General characters and classification up to classes with suitable examples
- 4.5 Vision and respiration in Arthropoda
- 4.6 Metamorphosis in Insects
- 4.7 *Peripatus* Structure and affinities
- 4.8 Social Life in Bees and Termites

Unit – V

Phylum Mollusca

- 5.1 General characters and classification up to classes with suitable examples
- 5.2 Pearl formation in Pelecypoda
- 5.3 Sense organs in Mollusca

PhylumEchinodermata

- 5.4 General characters and classification up to classes with suitable examples
- 5.5 Water vascular system in star fish
- 5.6 Larval forms of Echinodermata

PhylumHemichordata

5.7 General characters and classification up to classes with suitable examples

5.8 Balanoglossus - Structure and affinities

Co-curricular activities (suggested)

- Preparation of chart/model of phylogenic tree of life, 5-kingdom classification, *Elphidium* life cycle etc.
- Visit to Zoology museum or Coral island as part of Zoological tour
- Charts on life cycle of *Obelia*, polymorphism, sponge spicules
- Clay models of canal system in sponges
- Preparation of charts on life cycles of Fasciola and Ascaris
- Visit to adopted village and conducting awareness campaign on diseases, to people as part of Social Responsibility.
- Plaster-of-paris or Thermocol model of Peripatus
- Construction of a vermicompost in each college, manufacture of manure by students and donating to local farmers
- Models of compound eye, bee hive and terminarium (termitaria) by students
- Visit to apiculture centre and short-term training as part of apprenticeship programme of the govt. Of Andhra Pradesh
- Chart on pearl forming layers using clay or Thermocol
- Visit to a pearl culture rearing industry/institute
- Live model of water vascular system
- Phylogeny chart on echinoderm larvae and their evolutionary significance
- Preparation of charts depicting the feeding mechanism, 3 coeloms, tornaria larva etc., of *Balanoglossus*

REFERENCE BOOKS

1. L.H. Hyman 'The Invertebrates' Vol I, II and V. – M.C. Graw Hill Company Ltd.

2. Kotpal, R.L. 1988 - 1992 Protozoa, Porifera, Coelenterata, Helminthes,

Arthropoda, Mollusca, Echinodermata. Rastogi Publications, Meerut.

3. E.L. Jordan and P.S. Verma 'Invertebrate Zoology' S. Chand and Company.

4. R.D. Barnes 'Invertebrate Zoology' by: W.B. Saunders CO., 1986.

5. Barrington. E.J.W., 'Invertebrate structure and Function' by ELBS.

6 P.S. Dhami and J.K. Dhami. Invertebrate Zoology. S. Chand and Co. New Delhi.

7. Parker, T.J. and Haswell '*A text book of Zoology*' by, W.A., Mac Millan Co.

London.

8. Barnes, R.D. (1982). Invertebrate Zoology, V Edition"

ZOOLOGY MODEL PAPER FOR I SEMESTER

ZOOLOGY - PAPER - I

ANIMAL DIVERSITY – BIOLOGY OF NONCHORDATES

Time : 3 hrs		Max. Marks : 75
I. Answer any FIVE of the fol	lowing :	5x5=25
Draw labeled diagrams whe	rever necessary	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
II. Answer any FIVE of the fo	llowing:	5x10=50
Draw labeled diagrams whe	rever necessary	
9.		
	OR	
10.		
	OR	
11.		
	OR	
12.		
	OR	

13.

OR

ZOOLOGY PRACTICAL SYLLABUS FOR I SEMESTER ZOOLOGY - PAPER - I

ANIMAL DIVERSITY - BIOLOGY OF NONCHORDATES

Periods: 24

Max. Marks: 50

Learning Outcomes:

- To understand the importance of preservation of museum specimens
- To identify animals based on special identifying characters
- To understand different organ systems through demo or virtual dissections
- To maintain a neat, labeled record of identified museum specimens

Syllabus :

1. Study of museum slides / specimens / models (Classification of animals up to orders)

Protozoa: Amoeba, Paramoecium, Paramoecium Binary fission and Conjugation, Vorticella, Entamoebahistolytica, Plasmodium vivax

Porifera: *Sycon, Spongilla, Euspongia, Sycon-* T.S & L.S, Spicules, Gemmule **Coelenterata:** *Obelia – Colony & Medusa, Aurelia, Physalia, Velella, Corallium, Gorgonia, Pennatulav.*

Platyhelminthes: *Planaria, Fasciola hepatica, Fasciola*larval forms – Miracidium, Redia, Cercaria, *Echinococcusgranulosus, Taeniasolium, Schistosomahaematobium*vii.

Nemathelminthes: *Ascaris(Male & Female), Drancunculus, Ancylostoma, Wuchereria*

Annelida: Nereis, Aphrodite, Chaetopteurs, Hirudinaria, Trochophore larva Arthropoda: Cancer, Palaemon, Scorpion, Scolopendra, Sacculina, Limulus, Peripatus, Larvae - Nauplius, Mysis, Zoea, Mouth parts of male &female Anopheles and Culex, Mouthparts of Housefly and Butterfly. xiii.

Mollusca: Chiton, Pila, Unio, Pteredo, Murex, Sepia, Loligo, Octopus, Nautilus, Glochidium larva

Echinodermata: Asterias, Ophiothrix, Echinus, Clypeaster, Cucumaria, Antedon, Bipinnaria larva

Hemichordata: Balanoglossus, Tornaria larva

2. Dissections:

1. Prawn: Appendages, Digestive system, Nervous system, Mounting of Statocyst

2. Insect Mouth Parts

3. Laboratory Record work shall be submitted at the time of practical e amination

4. An **"Animal album**" containing photographs, cut outs, with appropriate write up about the above mentioned taxa. Different taxa/ topics may be given to different sets of students for this purpose

5. Computer - aided techniques should be adopted or show virtual dissections

RFERENCEMANUALS:

1. Practical Zoology- Invertebrates S.S. Lal

2. Practical Zoology - Invertebrates P.S. Verma

3. Practical Zoology - Invertebrates K.P. Kurl

4. Ruppert and Barnes (2006) Invertebrate Zoology,8th Edition, Holt Saunders

International Edition

AP STATE COUNCIL OF HIGHER EDUCATION

w.e.f. 2020-21 (Revised in April, 2020)

ZOOLOGY –SEMESTER II

PAPER - II: ANIMAL DIVERSITY - BIOLOGY OF CHORDATES

HOURS :60 (5X12)

Max. Marks:100

Course Outcomes:

By the completion of the course the graduate should able to -

- CO1 Describe general taxonomic rules on animal classification of chordates
- CO2 Classify Protochordata to Mammalia with taxonomic keys
- CO3 Understand Mammals with specific structural adaptaions
- CO4 Understand the significance of dentition and evolutionary significance
- CO5 Understand the origin and evolutionary relationship of different phyla from Prochordata to mammalia.

Learning objectives

- 1. To understand the animal kingdom .
- 2. To understand the taxonomic position of Protochordata to Mammalia.
- 3. To understand the general characteristics of animals belonging to Fishes to Reptilians.
- 4. To understand the body organization of Chordata.
- 5. To understand the taxonomic position of Protherian mammals.

ZOOLOGY SYLLABUS FOR II SEMESTER

PAPER – II: ANIMAL DIVERSITY – BIOLOGY OF CHORDATES

HOURS: 60 (5X12)

Max. Marks: 100

<u>Unit - I</u>

- 1.1 General characters and classification of Chordata upto classes
- 1.2 Protochordata- Salient features of Cephalochordata, Affinities of Cephalochordata.
- 1.3 Salient features of Urochordata
- 1.4 Structure and life history of *Herdmania*
- 1.5 Retrogressive metamorphosis Process and Significance

<u>Unit - II</u>

- 2.1 Cyclostomata, General characters, Comparison of Petromyzon and Myxine
- 2.2 Pisces : General characters of Fishes
- 2.3 *Scoliodon*: External features, Digestive system, Respiratory system, Structure and function of Heart, Structure and functions of the Brain.
- 2.4 Migration in Fishes
- 2.5 Types of Scales
- 2.6 Dipnoi

<u>Unit - III</u>

- 3.1 General characters of Amphibia
- 3.2 Classification of Amphibiaup to orders with examples.
- 3.3 *Ranahexadactyla*: External features, Digestive system, Respiratory system, Structure and function of Heart, structure and functions of the Brain
- 3.4 Reptilia: General characters of Reptilia, Classification of Reptilia upto orders withexamples
- 3.5 *Calotes*:External features, Digestive system, Respiratory system, Structure and function of Heart, structure and function of Brain
- 3.6. Identification of Poisonous snakes and Skull in reptiles

<u>Unit - IV</u>

- 4.1 Aves General characters of Aves
- 4.2 *Columba livia*: External features, Digestive system, Respiratory system, Structure and function of Heart, structure and function of Brain
- 4.3 Migration in Birds
- 4.4 Flight adaptation in birds

<u>Unit - V</u>

- 5.1 General characters of Mammalia
- 5.2 Classification of Mammalia upto sub classes with examples
- 5.3 Comparision of Prototherians, Metatherians and Eutherians
- 5.4 Dentition in mammals

Co-curricular activities (suggested)

- Preparation of charts on Chordate classification (with representative animal photos) and retrogressive metamorphosis
- Thermocol or Clay models of Herdmania and Amphioxus
- Visit to local fish market and identification of local cartilaginous and bony fishes
- Maintaining of aquarium by students
- Thermocol model of fish heart and brain
- Preparation of slides of scales of fishes
- Visit to local/nearby river to identify migratory fishes and prepare study notes
- Preparation of Charts on above topics by students (Eg: comparative account of vertebrate heart/brain/lungs, identification of snakes etc.)
- Collecting and preparation of Museum specimens with dead frogs/snakes/lizards etc., and/or their skeletons
- Additional input on types of snake poisons and their antidotes (student activity).
- Collection of bird feathers and submission of report on Plumology
- Taxidermic preparation of dead birds for Zoology museum
- Map pointing of prototherian and metatherian mammals
- Chart preparation for dentition in mammals

REFERENCE BOOKS

- J.Z. Young, 2006. The life of vertebrates. (The Oxford University Press, New Delhi).
 646 pages. Reprinted
- Arumugam, N. Chordate Zoology, Vol. 2. SarasPlublication. 278 pages. 200 figs.
- A.J. Marshall, 1995. Textbook of zoology, Vertebrates. (The McMillan Press Ltd., UK). 852 pages. (Revised edition of Parker &Haswell, 1961).
- M. EkambaranathaAyyar, 1973. A manual of zoology. Part II. (S. ViswanathanPvt. Ltd., Madras).
- P.S. Dhami& J.K. Dhami, 1981. Chordate zoology. (R. Chand & Co.). 550 pages.
- Gurdarshan Singh & H. Bhaskar, 2002. Advanced Chordate Zoology. Campus Books, 6 Vols., 1573 pp., tables, figs.
- A.K. Sinha, S. Adhikari& B.B. Ganguly, 1978. Biology of animals. Vol. II. Chordates. (New Central Book Agency, Calcutta). 560 pages.
- R.L.Kotpal, 2000. Modern textbook of zoology, Vertebrates. (Rastogi Publ., Meerut).
 632 pages.
- E.L. Jordan & P.S. Verma, 1998. Chordate zoology. (S. Chand & Co.). 1092 pages.
- G.S. Sandhu, 2005. Objective Chordate Zoology. Campus Books, vii, 169 pp.
- Sandhu, G.S. & H. Bhaskar, H. 2004. Textbook of Chordate Zoology. Campus Books, 2 vols., xx, 964 p., figs.
- Veena, 2008. Lower Chordata. (Sonali Publ.), 374 p., tables, 117 figs.

ZOOLOGY MODEL PAPER FOR II SEMESTER

ZOOLOGY - PAPER - II

ANIMAL DIVERSITY – BIOLOGY OF CHORDATES

Time: 3 hrs	Max. Marks: 75
I. Answer any FIVE of the following:	5x5=25
Draw labeled diagrams wherever necessary	
1. Amphioxus	
2. Placoid scale	
3. Quill feather	
4. Prototheria	
5. Anadromous migration	
6. Draco	
7. Emu	
8. Apoda	
II. Answer any FIVE of the following:	5x10=50
Draw labeled diagrams wherever necessary	
9. Explain the life history of Herdmania	
OR	
Explain the origin and general characters of chordates	
10. Compare the characters of <i>Petromyzon</i> and <i>Myxine</i>	
OR	
Describe the structure of heart of Scoliodon	
11. Describe the brain of Ranahexadactyla	
OR	
Explain the external features of Calotes	
12. Write an essay on flight adaptations in birds	
OR	
Explain the respiratory system of Columba livia	
13. Compare the characters of Metatheria and Eutheria	

OR

Write an essay on dentition in mammals

ZOOLOGY PRACTICAL SYLLABUS FOR II SEMESTER ZOOLOGY - PAPER - II

ANIMAL DIVERSITY - BIOLOGY OF CHORDATES

Periods: 24

Max. Marks: 50

Learning Outcomes:

- To understand the taxidermic and other methods of preservation of chordates
- To identify chordates based on special identifying characters
- To understand internal anatomy of animals through demo or virtual dissections, thus directing the student for "empathy towards the fellow living beings"
- To maintain a neat, labeled record of identified museum specimens

OBSERVATION OF THE FOLLOWING SLIDES / SPOTTERS / MODELS

- 1. Protochordata :Herdmania, Amphioxus, Amphioxus T.S through pharynx.
- 2. Cyclostomata : Petromyzon and Myxine.
- 3. Pisces : Pristis, Torpedo, Hippocoampus , Exocoetus, Echeneis, Labeo, Catla, Clarius, Channa, Anguilla.
- 4. Amphibia : Ichthyophis, Amblystoma, Axolotl larva, Hyla,
- 5. Reptilia: Draco, Chamaeleon, Uromastix,, Testudo, Trionyx, Russels viper, Naja, Krait, Hydrophis, Crocodile.
- 6. Aves : Psittacula, Eudynamis, Bubo, Alcedo.
- 7. Mammalia: Ornithorhynchus, Pteropus, Funambulus.

Dissections-

- 1. ScoliodonIX and X, Cranial nerves
- 2. ScoliodonBrain
- 3. Mounting of fish scales

Note: 1. Dissections are to be demonstrated only by the faculty or virtual.

2.Laboratory Record work shall be submitted at the time of practical examination.

REFERENCE BOOKS:

- 1. S.S.Lal, Practical Zoology Vertebrata
- 2. P.S.Verma, A manual of Practical Zoology Chordata

AP STATE COUNCIL OF HIGHER EDUCATION w.e.f. 2020-21 (Revised in April, 2020) ZOOLOGY – SEMESTER III PAPER – III: CELL BIOLOGY, GENETICS, MOLECULAR BIOLOGY AND EVOLUTION

HOURS:60 (5X12)

Max. Marks:100

Course Outcomes:

The overall course outcome is that the student shall develop deeper understanding of what life is and how it functions at cellular level. This course will provide students with a deep knowledge in Cell Biology, Animal Biotechnology and Evolution and by the completion of the course the graduate shall able to -

- **CO1** To understand the basic unit of the living organisms and to differentiate the organisms by their cell structure.
- **CO2** Describe fine structure and function of plasma membrane and different cell organelles of eukaryotic cell.
- **CO3** To understand the history of origin of branch of genetics, gain knowledge on heredity, interaction of genes, various types of inheritance patterns existing in animals
- CO4 Acquiring in-depth knowledge on various of aspects of genetics involved in sex determination, human karyotyping and mutations of chromosomes resulting in various disorders
- **CO5** Understand the central dogma of molecular biology and flow of genetic information from DNA to proteins.
- **CO6** Understand the principles and forces of evolution of life on earth, the process of evolution of new species and apply the same to develop new and advanced varieties of animals for the benefit of the society

Learning Objectives

- To understand the origin of cell and distinguish between prokaryotic and eukaryotic cell
- To understand the role of different cell organelles in maintenance of life activities
- To provide the history and basic concepts of heredity, variations and gene interaction
- To enable the students distinguish between polygenic, sex-linked, and multiple allelic modes of inheritance.
- To acquaint student with basic concepts of molecular biology as to how characters are expressed with a coordinated functioning of replication, transcription and translation in all living beings
- To provide knowledge on origin of life, theories and forces of evolution
- To understand the role of variations and mutations in evolution of organisms

ZOOLOGY SYLLABUS FOR III SEMESTER PAPER – III: CELL BIOLOGY, GENETICS, MOLECULAR BIOLOGY AND EVOLUTION

HOURS: 60 (5X12)

Max. Marks: 100

Unit – I Cell Biology

- 1.1 Definition, history, prokaryotic and eukaryotic cells, virus, viroids, mycoplasma
- 1.2 Electron microscopic structure of animal cell.
- 1.3 Plasma membrane Models and transport functions of plasma membrane.
- .4Structure and functions of Golgi complex, Endoplasmic Reticulum and Lysosomes
- 1.5 Structure and functions of Ribosomes, Mitochondria, Nucleus, Chromosomes
- (Note: 1. General pattern of study of each cell organelle Discovery, Occurrence, Number, Origin, Structure and Functions with suitable diagrams)

2. Need not study cellular respiration under mitochondrial functions)

Unit – II Genetics - I

- 2.1 Mendel's work on transmission of traits
- 2. 2 Gene Interaction Incomplete Dominance, Codominance, Lethal Genes
- 2. 3 Polygenes (General Characteristics & examples); Multiple Alleles (General Characteristics and Blood group inheritance
- 2.4 Sex determination (Chromosomal, Genic Balance, Hormonal, Environmental and Haplo-diploidy types of sex determination)
- 2. 5 Sex linked inheritance (X-linked, Y-linked & XY-linked inheritance)

Unit – III Genetics - II

- 3.1 Mutations & Mutagenesis
- 3.2 Chromosomal Disorders (Autosomal and Allosomal)
- 3.3 Human Genetics Karyotyping, Pedigree Analysis (basics)
- 3.4 Basics on Genomics and Proteomics

UNIT IV: Molecular Biology

4.1 Central Dogma of Molecular Biology

4.2 Basic concepts of -

- a. DNA replication Overview (Semi-conservative mechanism, Semidiscontinuous mode, Origin & Propagation of replication fork)
- b. Transcription in prokaryotes Initiation, Elongation and Termination, Posttranscriptional modifications (basics)
- c. Translation Initiation, Elongation and Termination
- 4.3 Gene Expression in prokaryotes (Lac Operon); Gene Expression in eukaryotes

Unit - V

- 5.1 Origin of life
- 5.2 Theories of Evolution: Lamarckism, Darwinism, Germ PlasmTheroy, Mutation Theory
- 5.3Neo-Darwinism: Modern Synthetic Theory of Evolution, Hardy-Weinberg Equilibrium
- 5.4Forces of Evolution: Isolating mechanisms, Genetic Drift, Natural Selection, Speciation

Co-curricular activities (Suggested)

- Model of animal cell
- Working model of mitochondria to encourage creativity among students
- Photo album of scientists of cell biology
- Charts on plasma membrane models/cell organelles
- Observation of Mendelian / Non-Mendelian inheritance in the plants of college botanical garden or local village as a student study project activity
- Observation of blood group inheritance in students, from their parents and grand parents
- Karyotyping and preparation of pedigree charts for identifying diseases in family history
- Charts on chromosomal disorders
- Charts on central dogma/lac operon/genetic code
- Model of semi-conservative model of DNA replication
- Model of tRNA and translation mechanism
- Power point presentation of transcription or any other topic by students
- Draw geological time scale and highlight important events along the time line

• Chart on industrial melanism to teach directed selection, Darwin's finches to teach genetic drift, collection of data on weight of children born in primary health centres to teach stabilizing selection etc.

REFERENCES:

- Lodish, Berk, Zipursky, Matsudaria, Baltimore, Darnell 'Molecular Cell Biology' W.H.Freeman and company New York.
- 2. Cell Biology by De Robertis
- 3. Bruce Alberts, Molecular Biology of the Cell
- 4. Rastogi, Cytology
- 5. Varma & Aggarwal, Cell Biology
- 6. C.B. Pawar, Cell Biology
- Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008).Principles of Genetics. VIII Edition. Wiley India.
- **8.** Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics. V Edition. John Wiley and Sons Inc.
- Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. X Edition. Benjamin Cummings.
- Russell, P. J. (2009). Genetics- A Molecular Approach. III Edition. Benjamin Cummings.
- Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C. and Carroll, S.B. Introduction to Genetic Analysis. IX Edition. W. H. Freeman and Co.
- 12. Ridley, M. (2004). Evolution. III Edition. Blackwell Publishing
- **13.** Molecular Biology by freifielder
- 14. Instant Notes in Molecular Biology by Bios scientific publishers and Viva Books Private Limited
- **15.** Hall, B. K. and Hallgrimsson, B. (2008). Evolution. IV Edition. Jones and Bartlett Publishers
- Campbell, N. A. and Reece J. B. (2011). Biology. IX Edition, Pearson, Benjamin, Cummings.
- 17. Douglas, J. Futuyma (1997). Evolutionary Biology. Sinauer Associates.
- 18. Minkoff, E. (1983). Evolutionary Biology. Addison-Wesley.
- 19. James D. Watson, Nancy H. Hopkins 'Molecular Biology of the Gene'
- 20. Jan M. Savage. Evolution, 2nd ed, Oxford and IBH Publishing Co., New Delhi.
- 21. Gupta P.K., 'Genetics

ZOOLOGY MODEL PAPER FOR III SEMESTER ZOOLOGY - PAPER - III

CELL BIOLOGY, GENETICS, MOLECULAR BIOLOGY AND EVOLUTION

Time : 3 hrs	Max. Marks : 75
I. Answer any FIVE of the following :	5x5=25
Draw labeled diagrams wherever necessary	
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
II. Answer any FIVE of the following:	5x10=50
Draw labeled diagrams wherever necessary	
9.	
OR	
10.	
OR	
11.	
OR	
12.	
OR	

13.

ZOOLOGY PRACTICAL SYLLABUS FOR III SEMESTER ZOOLOGY - PAPER - III

CELL BIOLOGY, GENETICS, MOLECULAR BIOLOGY AND EVOLUTION

Periods: 24

Max. Marks: 50

Learning Objectives:

- Acquainting and skill enhancement in the usage of laboratory microscope
- Hands-on experience of different phases of cell division by experimentation
- Develop skills on human karyotyping and identification of chromosomal disorders
- To apply the basic concept of inheritance for applied research
- To get familiar with phylogeny ad geological history of origin & evolution of animals

I. Cell Biology

- 1. Preparation of temporary slides of Mitotic divisions with onion root tips
- 2. Observation of various stages of Mitosis and Meiosis with prepared slides
- 3. Mounting of salivary gland chromosomes of *Chiranomous*

II. Genetics

- 1. Study of Mendelian inheritance using suitable examples and problems
- 2. Problems on blood group inheritance and sex linked inheritance
- 3. Study of human karyotypes (Down's syndrome, Edwards, syndrome, Patau syndrome, Turner's syndrome and Klinefelter syndrome)

III. Evolution

- 1. Study of fossil evidences
- 2. Study of homology and analogy from suitable specimens and pictures
- 3. Phylogeny of horse with pictures
- 4. Study of Genetic Drift by using examples of Darwin's finches (pictures)
- 5. Visit to Natural History Museum and submission of report

REFERENCE BOOKS

- 1. Burns GW. 1972. *The Science of Genetics. An Introduction to Heredity.* Mac Millan Publ. Co.Inc.
- 2. Gardner EF. 1975. Principles of Genetics. John Wiley & Sons, Inc. New York.
- 3. Harth and Jones EW. 1998. *Genetics Principles and Analysis*. Jones and BarHett Publ. Boston.
- 4. Levine L. 1969. Biology of the Gene. Toppan.
- 5. Pedder IJ. 1972. Genetics as a Basic Guide. W. Norton & Company, Inc.
- 6. Rastogi VB. 1991. *A Text Book of Genetics*. KedarNath Ram Nath Publications, Meerut, Uttar Pradesh, India.
- 7. Rastogi VB. 1991. *Organic Evolution*. KedarNath Ram Nath Publications, Meerut, Uttar Pradesh, India.
- 8. Stahl FW. 1965. Mechanics of Inheritance. Prentice-Hall.
- 9. White MJD. 1973. Animal Cytology and Evolution. Cambridge Univ.Press.

AP STATE COUNCIL OF HIGHER EDUCATION w.e.f. 2020-21 (Revised in April, 2020) ZOOLOGY – SEMESTER IV PAPER – IV: ANIMAL PHYSIOLOGY, CELLULAR METABOLISM AND EMBRYOLOGY

HOURS : 60 (5X12)

Max. Marks: 100

Course Outcomes:

This course will provide students with a deep knowledge in Physiology, Cellular metabolism and Molecular Biology and by the completion of the course the graduate shall able to –

CO1 Understand the functions of important animal physiological systems including digestion, cardio-respiratory and renal systems.

CO2 Understand the muscular system and the neuro-endocrine regulation of animal growth, development and metabolism with a special knowledge of hormonal control of human reproduction.

CO3 Describe the structure, classification and chemistry of biomolecules and enzymes responsible for sustenance of life in living organisms

CO4 Develop broadunderstanding the basic metabolic activities pertaining to the catabolism and anabolism of various biomolecules

CO5 Describe the key events in early embryonic development starting from the formation of gametes upto gastrulation and formation of primary germ layers.

Learning Objectives

- To achieve a thorough understanding of various aspects of physiological systems and their functioning in animals.
- To instil the concept of hormonal regulation of physiology, metabolism and reproduction in animals.
- To understand the disorders associated with the deficiency of hormones
- To demonstrate a thorough knowledge of the intersection between the disciplines of Biology and Chemistry.
- To provide insightful knowledge on the structure and classification of carbohydrates, proteins, lipids and enzymes
- To demonstrate an understanding of fundamental biochemical principles such as the function of biomolecules, metabolic pathways and the regulation of biochemical processes
- To make students gain proficiency in laboratory techniques in biochemistry and orient them to apply the scientific method to the processes of experimentation and hypothesis testing.

ZOOLOGY SYLLABUS FOR IV SEMESTER PAPER – IV: ANIMAL PHYSIOLOGY, CELLULAR METABOLISM AND EMBRYOLOGY

HOURS: 60 (5X12)

Max. Marks: 100

UNIT I Animal Physiology - I

1.1 Process of digestion and assimilation

1.2 Respiration - Pulmonary ventilation, transport of oxygen and CO₂

(Note: Need not study cellular respiration here)

1.3 Circulation - Structure and functioning of heart, Cardiac cycle

1.4 Excretion - Structure and functions of kidney urine formation, counter current Mechanism

UN IT II Animal Physiology - II

2.1Nerve impulse transmission - Resting membrane potential, origin and propagation of action potentials along myelinated and non-myelinated nerve fibers

2.2Muscle contraction - Ultra structure of muscle, molecular and chemical basis of muscle contraction

2.3 Endocrine glands - Structure, functions of hormones of pituitary, thyroid, parathyroid, adrenal glands and pancreas

2.4 Hormonal control of reproduction in a mammal

UNIT III Cellular Metabolism – I (Biomolecules)

3.1 Carbohydrates - Classification of carbohydrates. Structure of glucose

3.2 Proteins - Classification of proteins. General properties of amino acids

3.3 Lipids - Classification of lipids

3.4 Enzymes: Classification and Mechanism of Action

UNITIV Cellular Metabolism – II

4.1Carbohydrate Metabolism - Glycolysis, Krebs cycle, Electron Transport Chain, Glycogen metabolism, Gluconeogenesis

4.2 Lipid Metabolism – β -oxidation of palmitic acid

4.3 Protein metabolism - Transamination, Deamination and Urea Cycle

Unit – V Embryology

- 5.1 Gametogenesis
- 5.2 Fertilization
- 5.3 Types of eggs
- 5.4 Types of cleavages
- 5.5 Development of Frog upto formation of primary germ layers

Co-curricular activities (Suggested)

- Chart on cardiac cycle, human lung, kidney/nephron structure etc.
- Working model of human / any mammalian heart.
- Chart of sarcomere/location of endocrine glands in human body
- Chart affixing of photos of people suffering from hormonal disorders
- Student study projects such as identification of incidence of hormonal disorders in the local primary health centre, studying the reasons thereof and measures to curb or any other as the lecturer feels good in nurturing health awareness among students
- Chart on structures of biomolecules/types of amino acids (essential and nonessential)Chart preparation by students on Glycolysis / kreb's cycle/urea cycle etc.
- Model of electron transport chain
- Preparation of models of different types of eggs in animals
- Chart on frog embryonic development, fate map of frog blastula, cleavage etc.

REFERENCE BOOKS

- 1. Eckert H. Animal Physiology: Mechanisms and Adaptation. W.H. Freeman & Company.
- 2. Floray E. An Introduction to General and Comparative Animal Physiology. W.B. Saunders

Co., Philadelphia.

- 3. Goel KA and Satish KV. 1989. *A Text Book of Animal Physiology*, Rastogi Publications, Meerut, U.P.
- 4. Hoar WS. General and Comparative Physiology. Prentice Hall of India, New Delhi.
- 5. Lehninger AL. Nelson and Cox. *Principles of Biochemistry*. Lange Medical Publications, New Delhi.
- 6. Prosser CL and Brown FA. *Comparative Animal Physiology*. W.B. Saunders Company, Philadelphia.
- 7. Developmental Biology by Balinksy
- 8. Developmental Biology by Gerard Karp
- 9. Chordate embryology by Varma and Agarwal
- 10. Embryology by V.B. Rastogi
- 11. Austen CR and Short RV. 1980. *Reproduction in Mammals*. Cambridge University Press.
- 12. Gilbert SF. 2006. *Developmental Biology*, 8th Edition. Sinauer Associates Inc., Publishers, Sunderland, USA.
- 13. Longo FJ. 1987. Fertilization. Chapman & Hall, London.
- Rastogi VB and Jayaraj MS. 1989. *Developmental Biology*. KedaraNath Ram Nath Publishers, Meerut, Uttar Pradesh.
- Schatten H and Schatten G. 1989. *Molecular Biology of Fertilization*. Academic Press, New York.

ZOOLOGY MODEL PAPER FOR IV SEMESTER

ZOOLOGY - PAPER - IV

ANIMAL PHYSIOLOGY, CELLULAR METABOLISM AND EMBRYOLOGY

Time : 3 hrs		Max. Marks : 75
I. Answer any FIVE of the following :		5x5=25
Draw labeled diagrams wherever nece	ssary	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
II. Answer any FIVE of the following:		5x10=50
Draw labeled diagrams wherever nece	ssary	
9.		
	OR	
10.		
	OR	
11.		
	OR	
12.		
	OR	

13.

OR

ZOOLOGY PRACTICAL SYLLABUS FOR IV SEMESTER ZOOLOGY - PAPER - IV

ANIMAL PHYSIOLOGY, CELLULAR METABOLISM AND EMBRYOLOGY

Periods: 24

Max. Marks: 50

Learning Objectives:

- Identification of an organ system with histological structure
- Deducing human health based on the information of composition of blood cells
- Demonstration of enzyme activity *in vitro*
- Identification of various biomolecules of tissues by simple colorimetric methods and also quantitative methods
- Identification of different stages of earl embryonic development in animals

I. ANIMAL PHYSIOLOGY

- 1. Qualitative tests for identification of carbohydrates, proteins and fats
- 2. Study of activity of salivary amylase under optimum conditions
- 3. T.S. of duodenum, liver, lung, kidney, spinal cord, bone and cartilage
- 4. Differential count of human blood

II. CELLULAR METABOLISM

- 1. Estimation of total proteins in given solutions by Lowry's method.
- 2. Estimation of total carbohydrate by Anthrone method.
- 3. Qualitative tests for identification of ammonia, urea and uric acid
- 4. Protocol for Isolation of DNA in animal cells

III. EMBRYOLOGY

- 1. Study of T.S. of testis, ovary of a mammal
- 2. Study of different stages of cleavages (2, 4, 8 cell stages)
- 3. Construction of fate map of frog blastula

REFERENCE BOOKS:

- Harper's Illustrated Biochemistry
- Cell and molecular biology: Concepts & experiments. VI Ed. John Wiley &sons. Inc.
- Lab Manual on Blood Analysis and Medical Diagnostics, S. Chand and Co. Ltd.
- Laboratory techniques by Plummer

AP STATE COUNCIL OF HIGHER EDUCATION w.e.f. 2020-21 (Revised in April, 2020) ZOOLOGY – SEMESTER IV COURSE – 5: IMMUNOLOGY AND ANIMAL BIOTECHNOLOGY

HOURS : 60 (5X12)

Max. Marks: 100

Course Outcomes:

This course will provide students with a deep knowledge in immunology, genetics, embryology and ecology and by the completion of the course the graduate shall able to -

- **CO1** To get knowledge of the organs of Immune system, types of immunity, cells and organs of immunity.
- **CO2** To describe immunological response as to how it is triggered (antigens) and regulated (antibodies)
- **CO3** Understand the applications of Biotechnology in the fields of industry and agriculture including animal cell/tissue culture, stem cell technology and genetic engineering.
- CO4 Get familiar with the tools and techniques of animal biotechnology.

Learning Objectives

- To trace the history and development of immunology
- To provide students with a foundation in immunological processes
- To be able to compare and contrast the innate versus adaptive immune systems and humoral versus cell-mediated immune responses
- Understand the significance of the Major Histocompatibility Complex in terms of immune response and transplantation
- To provide knowledge on animal cell and tissue culture and their preservation
- To empower students with latest biotechnology techniques like stem cell technology, genetic engineering, hyridoma technology, transgenic technology and their application in medicine and industry for the benefit of living organisms
 - To explain *in vitro* fertilization, embryo transfer technology and other reproduction manipulation methodologies.
 - To get insight in applications or recombinant DNA technology in agriculture, production of therapeutic proteins.

• To understand principles of animal culture, media preparation.

ZOOLOGY SYLLABUS FOR SEMESTER - IV COURSE – 5: IMMUNOLOGY AND ANIMAL BIOTECHNOLOGY

HOURS : 60 (5X12)

Max. Marks: 100

Unit – I Immunology – I (Overview of Immune system)

- 1.1 Introduction to basic concepts in Immunology
- 1.2 Innate and adaptive immunity, Vaccines and Immunization programme
- 1.3 Cells of immune system
- 1.4 Organs of immune system

Unit – II Immunology – II (Antigens, Antibodies, MHC and Hypersensitivity)

- 2.1 Antigens: Basic properties of antigens, B and T cell epitopes, haptens and adjuvants; Factors influencing immunogenicity
- 2.2 Antibodies: Structure of antibody, Classes and functions of antibodies
- 2.3 Structure and functions of major histocompatibility complexes
- 2.4 Exogenous and Endogenous pathways of antigen presentation and processing
- 2.5 Hypersensitivity Classification and Types

Unit – III Techniques

- 2.1 Animal Cell, Tissue and Organ culture media: Natural and Synthetic media,
- 2.2 Cell cultures: Establishment of cell culture (primary culture, secondary culture, types of cell lines; Protocols for Primary Cell Culture); Established Cell lines (common examples such as MRC, HeLa, CHO, BHK, Vero); Organ culture; Cryopreservation of cultures
- 2.3 Stem cells: Types of stem cells and applications
- 2.4 Hybridoma Technology: Production & applications of Monoclonal antibodies (mAb)

Unit – IV Applications of Animal Biotechnology

- **3.1** Genetic Engineering:Basic concept, Vectors, Restriction Endonucleases and Recombinant DNA technology
- **3.2** Gene delivery:Microinjection, electroporation, biolistic method (gene gun), liposome and viral-mediated gene delivery
- **3.3** Transgenic Animals:Strategies of Gene transfer; Transgenic sheep, fish; a pplications
- **3.4** Manipulation of reproduction in animals:Artificial Insemination, *In vitro* fertilization, super ovulation, Embryo transfer, Embryo cloning

Unit - V

- 4.1. PCR:Basics of PCR.
- 4.2 DNA Sequencing: Sanger's method of DNA sequencing- traditional and automated sequencing (2 hrs)
- 4.3 Hybridization techniques: Southern, Northern and Western blotting
- 4.4 DNA fingerprinting: Procedure and applications
- 4.5 Applications in Industry and Agriculture: Fermentation: Different types of Fermentation and Downstream processing; Agriculture: Monoculture in fishes, polyploidy in fishes

Co-curricular activities (suggested)

- Organizing awareness on immunization importance in local village in association with NCC and NSS teams
- Charts on types of cells and organs of immune system
- Student study projects on aspects such as identification of allergies among students (hypersensitivity), blood groups in the class (antigens and antibodies duly reported) etc., as per the creativity and vision of the lecturer and students
- Visit to research laboratory in any University as part of Zoological tour and exposure and/ or hands-on training on animal cell culture.
- Visit to biotechnological laboratory in University or any central/state institutes and create awareness on PCR, DNA finger printing and blot techniques or Visit to a fermentation industry or Visit to a local culture pond and submit report on culture of fishes etc.

REFERENCE BOOKS

- 1. Immunology by Ivan M. Riott
- 2. Immunology by Kubey
- 3. Sreekrishna V. 2005. *Biotechnology –I, Cell Biology and Genetics*. New Age International Publ.New Delhi, India.

ZOOLOGY MODEL PAPER FOR V SEMESTER

COURSE – 5: IMMUNOLOGY AND ANIMAL BIOTECHNOLOGY

Time: 3 hrs		Max. Marks: 75
I. Answer any FIVE of the fol	lowing:	5x5=25
Draw labeled diagrams whe	rever necessary	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
II. Answer any FIVE of the fo	llowing:	5x10=50
Draw labeled diagrams whe	rever necessary	
9.		
	OR	
10.		
	OR	
11.		
	OR	
12.		
	OR	
13.		
	0.5	

ZOOLOGY PRACTICAL SYLLABUS FOR V SEMESTER COURSE – 5: IMMUNOLOGY AND ANIMAL BIOTECHNOLOGY

Periods: 24

Max. Marks: 50

Learning Objectives:

- Acquainting student with immunological techniques vis-à-vis theory taught in the class room
- Interconnect the theoretical and practical knowledge of immunity with the outer world for the development of a healthier life.
- Demonstrate basic laboratory skills necessary for Biotechnology research
- Promoting application of the lab techniques for taking up research in higher studies

I. IMMUNOLOGY

- 1. Demonstration of lymphoid organs (as per UGC guidelines)
- 2. Histological study of spleen, thymus and lymph nodes (through prepared slides)
- 3. Blood group determination
- 4. Demonstration of
 - a. ELISA
 - b. Immunoelectrophoresis

II. Animal biotechnology

- 1. DNA quantification using DPA Method.
- 2. Techniques: Western Blot, Southern Hybridization, DNA Fingerprinting
- 3. Separation, Purification of biological compounds by paper, Thin-layer and Column chromatography
- 4. Cleaning and sterilization of glass and plastic wares for cell culture.
- 5. Preparation of culture media.

REFERENCE BOOKS

1. Immunology Lab Biology 477 Lab Manual; Spring 2016 Dr. Julie Jameson

- 2. Practical Immunology A Laboratory Manual;LAP LAMBERT Academic Publishing
- 3. Manual of laboratory experiments in cell biology by Edward, G
 - 4. Laboratory Techniques by Plummer

SUBJECT EXPERTS

Dr. K.Veeraiah Dept of Zoology Acharya Nagarjuna University Nagarjuna Nagar

> Dr.G.Srinivas Lecturer in Zoology & Co ordinator JKC, O/o CCE, Vijayawada

SYLLABUS VETTED BY

Dr.P.Padmavathi, Dept of Zoology Acharya Nagarjuna University Nagarjuna Nagar

A.P. STATE COUNCIL OF HIGHER EDUCATION B A, B Com & B Sc Programmes

Revised CBCS w.e.f. 2020-21 SKILL DEVELOPMENT COURSES To be Offered from Semesters I to IV

ZOOLOGY STREAM Syllabus of DAIRY TECHNOLOGY

Total 30 hrs (02h/wk), 02 Credits & Max 50 Marks

Learning Outcomes:

Aftersuccessful completion of the course, students will be able to;

- 1. Understand the pre-requisites for starting a Dairy farm
- 2. Recognize different breeds of Cows & buffaloes following safety precautions. 3. Prepare and give recommended feed and water for livestock
- 4. Maintain health of livestock along with productivity
- 5. Vaccination of cattle, nutrients requirements
- 6. Entrepreneurship i.e., Effectively market dairy products
- 7. Ensure safe and clean dairy farm and Standard safety measures to be taken in establishing 8. Efficiently start and manage to establish or develop a Dairy Industry

SYLLABUS:

Section I (Introduction and Establishment of a Dairy Farm):

- 1.1 Dairy development in India Dairy Cooperatives (NDRI, NDDB, TCMPF)(1hr)
- 1.2 Constraintsof Present Dairy Farmingand Future Scope of Dairy Farmer.(1 hr) 1.3 Selection of site for dairy farm; Systems of housing - Loose housing system, Conventional Dairy Farm; Records to be maintained in a dairy farm. (2 hrs)

Section II (Livestock Identification and Management): 13 Hrs

- 2.1 Breeds of Dairy Cattle and Buffaloes Identification of Indian cattle and buffalo breeds
- and Exotic breeds; Methods of selection of Dairy animals. (5 hrs)
- 2.2 Systems of inbreeding and crossbreeding. (2 hrs)
- 2.3 Weaning of calf, Castration, Dehorning, Deworming and Vaccination programme (3 hrs) 2.4 Care and management of calf, heifer, milk animal, dry and pregnant animal, bulls and

05 Hrs

- Section III (Feed Management, Dairy Management, Cleaning and Sanitation): 8 Hrs
 - 3.1 Basic Principles of Feed, Important Feed Ingredients, Feed formulation and Feed
 - 3.2 Operation Flood -Definition of Milk and Nutritive value of milk and ICMR recommendation of nutrients --Per Capita Milk production and availability in India and Andhra Pradesh -Methods of Collection and Storage of Milk-Labelling and Storage of milk products (4 hrs)
 - 3.3 Cleaning and sanitation of dairy farm Safety precautions to prevent accidents in an

Co-curricular Activities Suggested: (4 hrs)

- 1. Group discussion & SWOT analysis
- 2. Visit to a Dairy Farm
- 3. Visit to Milk Cooperative Societies
- 4. Visit to Feed Milling Plants
- 5. Market Study and Identification of Government Schemes, Insurance and Bank Loans in

Reference books:

- 1. Dairy Science: Petersen (W.E.) Publisher Lippincott & Company
- 2. Principles and practices of Dairy Farm -Jagdish Prasad 3. Text book of Animal Husbandry - G C Benarjee
- 4. Hand book of Animal Husbandry ICAR Edition
- 5. Outlines of Dairy Technology Sukumar (De) Oxford University press
- 6. Indian Dairy Products Rangappa (K.S.) & Acharya (KT) Asia Publishing House. 7. The technology of milk Proceesing – Ananthakrishnan, C.P., Khan, A.Q. and Padmanabhan, P.N. - Shri Lakshmi Publications.
- 8. Dairy India 2007, Sixth edititon
- 9. Economics of Milk Production Bharati Pratima Acharya Publishers.
- 10. http://www.asci-india.com/BooksPDF/Dairy%20Farmer%20or%20Entrepreneur.pdf 11. https://labour.gov.in/industrial-safety-health

Model Format for Question Paper:

MODEL QUESTION PAPER & PATTERN

Max. Marks: 50

Time: 1 1/2 hrs (90 Minutes)

SECTION A (Total: 4x5=20 Marks)

(Answer any four questions. Each answer carries 5

1	(At least 1 question should be the statistics 5 marks
1.	(At least 1 question should be given from each Unit)
2.	Animal Inbreeding
2	Thinnar hibreeding
3.	Sanitation of Dairy Farm
4.	Dairy development in India
5	Food Merel Division in India
- <u>-</u> -	Feed Mixing
6.	Deworming
7.	Milk Storage Methods
0	with Storage Methods
8.	Identification of characters of our T
	Identification of characters of any Two Dairy cattle

SECTION B

(Answer any three questions. Each answer carries 10 marks (Total: 3x10 = 30 Marks) (At least 1 question should be given from each Unit)

L	1. Write an essay on Dairy day 1	
	2. List out different uit viewelopment	in India, its current position and future scenario. selection of dairy animals and discuss briefly.
H	2. Dist our different methods involved it	selection of the position and future scenario
L	- Onv all account of feed in an 11	
	 Explain different methods of collectio Explain two methods of collection 	id feed management many and discuss orierly.
-	Explain different methods of collection	n of will
	5. Explain two methods of systems of ho	il OI milk.
	the methods of systems of ho	using of daimy animat
		Bor dany animals.

@@@@@@

- Note: Please read the following in addition to the Guidelines sent. 1. In Unit-2 and Unit-3, Sub-titles highlighted in Yellow colour are Skills. Sub-titles not
 - 2. Skills, though separately shown, shall also have 'content' to be learnt and written in the

 - 3. The field (hands on) skills are learnt through the Co-curricular Activities.
 - 4. One or two books referred shall be related to 'learning of skills' 5. Topics and syllabus may be prepared keeping all (BA/BSc/BCom) urban as well as rural

A.P. STATE COUNCIL OF HIGHER EDUCATION B A, B Com & B Sc Programmes

Revised CBCS w.e.f. 2020-21 SKILL DEVELOPMENT COURSES To be Offered from Semesters I to IV

ZOOLOGY STREAM Syllabus of DAIRY TECHNOLOGY

Total 30 hrs (02h/wk), 02 Credits & Max 50 Marks

Learning Outcomes:

Aftersuccessful completion of the course, students will be able to;

- 1. Understand the pre-requisites for starting a Dairy farm
- 2. Recognize different breeds of Cows & buffaloes following safety precautions. 3. Prepare and give recommended feed and water for livestock
- 4. Maintain health of livestock along with productivity
- 5. Vaccination of cattle, nutrients requirements
- 6. Entrepreneurship i.e., Effectively market dairy products
- 7. Ensure safe and clean dairy farm and Standard safety measures to be taken in establishing 8. Efficiently start and manage to establish or develop a Dairy Industry

SYLLABUS:

Section I (Introduction and Establishment of a Dairy Farm):

- 1.1 Dairy development in India Dairy Cooperatives (NDRI, NDDB, TCMPF)(1hr)
- 1.2 Constraintsof Present Dairy Farmingand Future Scope of Dairy Farmer.(1 hr) 1.3 Selection of site for dairy farm; Systems of housing - Loose housing system, Conventional Dairy Farm; Records to be maintained in a dairy farm. (2 hrs)

Section II (Livestock Identification and Management): 13 Hrs

- 2.1 Breeds of Dairy Cattle and Buffaloes Identification of Indian cattle and buffalo breeds
- and Exotic breeds; Methods of selection of Dairy animals. (5 hrs)
- 2.2 Systems of inbreeding and crossbreeding. (2 hrs)
- 2.3 Weaning of calf, Castration, Dehorning, Deworming and Vaccination programme (3 hrs) 2.4 Care and management of calf, heifer, milk animal, dry and pregnant animal, bulls and

05 Hrs

- Section III (Feed Management, Dairy Management, Cleaning and Sanitation): 8 Hrs
 - 3.1 Basic Principles of Feed, Important Feed Ingredients, Feed formulation and Feed
 - 3.2 Operation Flood -Definition of Milk and Nutritive value of milk and ICMR recommendation of nutrients --Per Capita Milk production and availability in India and Andhra Pradesh -Methods of Collection and Storage of Milk-Labelling and Storage of milk products (4 hrs)
 - 3.3 Cleaning and sanitation of dairy farm Safety precautions to prevent accidents in an

Co-curricular Activities Suggested: (4 hrs)

- 1. Group discussion & SWOT analysis
- 2. Visit to a Dairy Farm
- 3. Visit to Milk Cooperative Societies
- 4. Visit to Feed Milling Plants
- 5. Market Study and Identification of Government Schemes, Insurance and Bank Loans in

Reference books:

- 1. Dairy Science: Petersen (W.E.) Publisher Lippincott & Company
- 2. Principles and practices of Dairy Farm -Jagdish Prasad 3. Text book of Animal Husbandry - G C Benarjee
- 4. Hand book of Animal Husbandry ICAR Edition
- 5. Outlines of Dairy Technology Sukumar (De) Oxford University press
- 6. Indian Dairy Products Rangappa (K.S.) & Acharya (KT) Asia Publishing House. 7. The technology of milk Proceesing – Ananthakrishnan, C.P., Khan, A.Q. and Padmanabhan, P.N. - Shri Lakshmi Publications.
- 8. Dairy India 2007, Sixth edititon
- 9. Economics of Milk Production Bharati Pratima Acharya Publishers.
- 10. http://www.asci-india.com/BooksPDF/Dairy%20Farmer%20or%20Entrepreneur.pdf 11. https://labour.gov.in/industrial-safety-health

Model Format for Question Paper:

MODEL QUESTION PAPER & PATTERN

Max. Marks: 50

Time: 1 1/2 hrs (90 Minutes)

SECTION A (Total: 4x5=20 Marks)

(Answer any four questions. Each answer carries 5

1	(At least 1 question should be the statistics 5 marks
1.	(At least 1 question should be given from each Unit)
2.	Animal Inbreeding
2	Thinnar hibreeding
3.	Sanitation of Dairy Farm
4.	Dairy development in India
5	Food Merel Division in India
- <u>-</u> -	Feed Mixing
6.	Deworming
7.	Milk Storage Methods
0	with Storage Methods
8.	Identification of characters of our T
	Identification of characters of any Two Dairy cattle

SECTION B

(Answer any three questions. Each answer carries 10 marks (Total: 3x10 = 30 Marks) (At least 1 question should be given from each Unit)

L	1. Write an essay on Dairy day 1	
	2. List out different ut viewelopment	in India, its current position and future scenario. selection of dairy animals and discuss briefly.
H	2. Dist our different methods involved it	selection of the position and future scenario
L	- Onv all account of feed in an 11	
	 Explain different methods of collectio Explain two methods of collection 	id feed management many and discuss orierly.
-	Explain different methods of collection	n of will
	5. Explain two methods of systems of ho	il OI milk.
	the methods of systems of ho	using of daimy animat
		Bor dany animals.

@@@@@@

- Note: Please read the following in addition to the Guidelines sent. 1. In Unit-2 and Unit-3, Sub-titles highlighted in Yellow colour are Skills. Sub-titles not
 - 2. Skills, though separately shown, shall also have 'content' to be learnt and written in the

 - 3. The field (hands on) skills are learnt through the Co-curricular Activities.
 - 4. One or two books referred shall be related to 'learning of skills' 5. Topics and syllabus may be prepared keeping all (BA/BSc/BCom) urban as well as rural

A.P. STATE COUNCIL OF HIGHER EDUCATION B.A, B.Com & B.Sc. PROGRAMMES

Revised CBCS w.e.f. 2020-21 SKILL DEVELOPMENT COURSES

Science Stream

Syllabus of FOOD ADULTERATION

Total 30 hrs (02h/wk),

02 Credits & Max Marks: 50

Learning Outcomes:

1.0

After successful completion of the course, students will be able to:

- 1. Get basic knowledge onvarious foods and about adulteration.
- 2. Understand the adulteration of common foods and their adverse impact on health
- 3. Comprehend certain skills of detecting adulteration of common foods.
- 4. Be able to extend their knowledge to other kinds of adulteration, detection and remedies. 5. Know the basic laws and procedures regarding food adulteration and consumer

SYLLABUS: UNIT-I - Common Foods and Adulteration:

Common Foods subjected to Adulteration - Adulteration - Definition - Types; Poisonous substances, Foreign matter, Cheap substitutes, Spoiled parts. Adulteration through Food Additives - Intentional and incidental. General Impact on Human Health.

UNIT-II -: Adulteration of Common Foods and Methods of Detection: (10hrs)

Means of AdulterationMethods of Detection Adulterants in the following Foods; Milk, Oil, Grain, Sugar, Spices and condiments, Processed food, Fruits and vegetables. Additives and Sweetening agents (at least three methods of detection for each food item).

UNIT-III -: Present Laws and Procedures on Adulteration:

Highlights of Food Safety and Standards Act 2006 (FSSA) -Food Safety and Standards Authority of India-Rules and Procedures of Local Authorities.

Role of voluntary agencies suchas, Agmark, I.S.I.Qualitycontrol laboratories of companies, Private testing laboratories, Quality controllaboratories of consumer co-operatives. Consumer education, Consumer's problemsrightsandresponsibilities, COPRA 2019 - Offenses and Penalties - Procedures to Complain - Compensation to Victims.

Recommended Co-curricular Activities (including Hands on Exercises):

- 1. Collection of information on adulteration of some common foods from local market
- 2. Demonstration of Adulteration detection methods for a minimum of 5 common foods (one method each)

(07hrs)

(08hrs)

- 3. Invited lecture/training by local expert
- 4. Visit to a related nearby laboratory
- 5. Assignments, Group discussion, Quiz etc.

Reference e Books and Websites:

- 1. A firstcourseinFoodAnalysis-A.Y.Sathe,NewAgeInternational(P)Ltd.,1999
- 2. FoodSafety, casestudies-Ramesh. V. Bhat, NIN, 1992
- 3. https://old.fssai.gov.in/Portals/0/Pdf/Draft_Manuals/Beverages and confectionary.pdf 4. https://cbseportal.com/project/Download-CBSE-XII-Chemistry-Project-Food-
- Adulteration#gsc.tab=0 (Downloadable e material on food adulteration) 5. https://www.fssai.gov.in/
- 6. https://indianlegalsolution.com/laws-on-food-adulteration/
- 7. https://fssai.gov.in/dart/
- 8. https://byjus.com/biology/food-adulteration/ 9. Wikiepedia
- 10. Vikaspedia

61 B

Recommended MODEL QUESTION PAPER FORMAT

Max. Marks: 50

16

Time: 1¹/₂ hrs (90 Minutes)

SECTION- A

(4x5M=20 Marks)

Answer any four questions. Each answer carries 5 marks (At least 1 question should be given from each Unit)

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

SECTION B

(3x10M = 30 Marks)

Answer any three questions. Each answer carries 10 marks (At least 1 question should be given from each Unit)

1	
1.	
2.	
2	
4.	
D.	

MODEL QUESTION PAPER

Max. Marks: 50

Time: 1½ hrs (90 Minutes)

SECTION- A

(4x5M=20 Marks)

Answer any four questions. Each answer carries 5 marks (At least 1 question should be given from each Unit)

- 1. Define food adulteration?
- 2. Explain the adulteration through Food Additives
- 3. Name few cheap substitutes used in food adulteration
- 4. Give examples for food additives and sweetening agents
- 5. Write a short notes on processed food
- 7. Name the laws that governs the food adulteration

8. Explain the procedure to get ccompensation to the victims of food adulteration

SECTION B

(3x10M = 30 Marks)

Answer any three questions. Each answer carries 10 marks (At least 1 question should be given from each Unit)

- 9. Write an essay on the common Foods which are subjected to Adulteration and explain the types poisonous substances added for food adulteration
- 10. Describe the highlights of Food Safety and Standards Act 2006 (FSSAI)
- 11. Explain the food testing and standardized testing methods and protocols
- 12. Write in detail about the general Impact of food adulteration on Human Health
- 13. Write an essay on different types of offenses of food adulteration and the penalties imposed

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar, 6th Battalion Road, Atmakur (V), Mangalagiri (M), Guntur-522 503, Andhra Pradesh **Web**: www.apsche.org **Email**: acapsche@gmail.com

REVISED SYLLABUS OF ENGLISH under (Part – I) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-21

PROGRAMME: THREE-YEAR B.A. /B.Sc./B.Com/BCA/BBM/BHM & CT, etc.

Andhra Pradesh State Council of Higher Education, Mangalagiri, Guntur District

Revised English Syllabus from 2020-21 Onwards Under Choice Based Credit System

Introduction

The turn of the twenty first century has made the English Language skills a passport to the job market to all job seekers. Ability to communicate well in English has become a hallmark of good educational foundation and a prerequisite for all graduates. The students are expected to possess a measurable knowledge and a set of skills in using English language in personal and professional life. The present course **English Praxis** in three parts offers suitable context to teach, learn and practise target language skills. Each part of the course aims at certain specified skills which are taught through various text-based classroom activities and the English Language Laboratory activities. The syllabus of the course offers an open platform to the teacher to facilitate active participatory learning to the students. Hence the whole course is offered in three semesters. The first part of the course offers fundamentals of the English language in five units: Listening, Speaking, Grammar, Writing and Soft Skills. These introductory units are developed into full length courses in the subsequent semesters in addition to Reading Skills so as to prepare the learner into a fully equipped individual.

In addition to the classroom interaction, the course also aims at language enhancement through various ICT based online and offline activities in the English Language Laboratory. Each Unit is reinforced with Laboratory activities. The College administration will bestow special attention to make the **English Praxis** course an activity oriented one. The innovative methods and creativity of the English faculty will enhance the learners' participation in teaching and learning.

Semester-I English Praxis Course-I : A Course in Communication and Soft Skills Semester-II English Praxis Course -II : A Course in Reading & Writing Skills

Semester-III English Praxis Course -III: A Course in Conversational Skills

English Syllabus-Semester-I

English Praxis Course-I

A Course in Communication and Soft Skills

Learning Outcomes

By the end of the course the learner will be able to :

- Use grammar effectively in writing and speaking.
- Demonstrate the use of good vocabulary
- Demonstrate an understating of writing skills
- Acquire ability to use Soft Skills in professional and daily life.
- Confidently use the tools of communication skills

I. UNIT: Listening Skills

- i. Importance of Listening
- ii. Types of Listening
- iii. Barriers to Listening
- iv. Effective Listening

II. UNIT: Speaking Skills

- a. Sounds of English: Vowels and Consonants
- b. Word Accent
- c. Intonation

III. UNIT: Grammar

- a) Concord
- b) Modals
- c) Tenses (Present/Past/Future)
- d) Articles
- e) Prepositions
- f) Question Tags
- g) Sentence Transformation (Voice, Reported Speech & Degrees of Comparison)
- h) Error Correction

IV. UNIT: Writing

- i. Punctuation
- ii. Spelling
- iii. Paragraph Writing

V. UNIT: Soft Skills

- a. SWOC
- b. Attitude
- c. Emotional Intelligence
- d. Telephone Etiquette
- e. Interpersonal Skills

English Syllabus-Semester-II

English Praxis Course-II

A Course in Reading & Writing Skills

Learning Outcomes

By the end of the course the learner will be able to :

- Use reading skills effectively
- Comprehend different texts
- Interpret different types of texts
- Analyse what is being read
- Build up a repository of active vocabulary
- Use good writing strategies
- Write well for any purpose
- Improve writing skills independently for future needs

I. UNIT

Prose Skills	 : 1. How to Avoid Foolish Opinions : 2. Vocabulary: Conversion of Wor : 3. One Word Substitutes : 4. Collocations 	
II. UNIT		
Prose	: 1. The Doll's House	Katherine Mansfield
Poetry	: 2. Ode to the West Wind	P B Shelley
Non-Detailed Text	: 3. Florence Nightingale	Abrar Mohsin
Skills	: 4. Skimming and Scanning	
III. UNIT		
Prose	: 1. The Night Train at Deoli	Ruskin Bond
Poetry	: 2. Upagupta	Rabindranath Tagore
Skills	: 3. Reading Comprehension : 4. Note Making/Taking	
IV. UNIT		
Poetry	: 1. Coromandel Fishers	Sarojini Naidu
Skills	: 2. Expansion of Ideas	
	: 3. Notices, Agendas and Minutes	
V.UNIT		
Non-Detailed Text	: 1. An Astrologer's Day	R K Narayan
Skills	: 2. Curriculum Vitae and Resume	-
	: 3. Letters	
	: 4. E-Correspondence	

English Syllabus-Semester-III

English Praxis Course-III

A Course in Conversational Skills

Learning Outcomes

By the end of the course the learner will be able to :

• • •	Speak fluently in English Participate confidently in any social interaction Face any professional discourse Demonstrate critical thinking Enhance conversational skills by observing the professional interviews			
I. UNIT				
Speech Skills	: 1. Tryst with Destiny Jawaharlal Nehru : 2. Greetings			
	: 3. Introductions			
II. UNIT				
Speech	: 1. Yes, We Can Barack Obama			
Interview	: 2. A Leader Should Know How to Manage Failure Dr.A.P.J.Abdul Kalam/ India Knowledge at Wharton			
Skills	: 3. Requests			
III. UNIT Interview Skills	 1. Nelson Mandela's Interview With Larry King 2. Asking and Giving Information 3. Agreeing and Disagreeing 			
IV. UNIT				
Interview Skills	 : 1. JRD Tata's Interview With T.N.Ninan : 2. Dialogue Building : 3. Giving Instructions/Directions 			
V. UNIT 1. Speech Skills	 : 1. You've Got to Find What You Love Steve Jobs : 2. Debates : 3. Descriptions : 4. Role Play 			

SUBJECT EXPERTS

Prof. K.Ratna Shiela Mani, Department of English, Acharya Nagarjuna University, Nagarjuna Nagar.

Dr. I. Vijaya Babu, Principal, Government Degree College, S.Kota, Vizianagaram District– 533255

SYLLABUS VETTED BY

Prof. C.L.L.Jayaprada, Department of English (Retd), Andhra University, Visakhapatnam.

STRUCTURE OF B.Sc (HUMAN GENETICS) PROGRAM UNDER CBCS REVISED SYLLABUS - 2020

YEAR	SEMESTER	PAPER	TITLE	MARKS	CREDITS
1st	Ι	HGT- I	GENETICS & HUMAN HERIDITY	100	3
		HGP-I	PRACTICAL	50	2
	II	HGT-II	HUMAN GENETICS AND CYTOGENTICS	100	3
		HGP-II	PRACTICAL	50	2
2 nd	III	HGT-III	HUMAN MOLECULAR GENETICS	100	3
		HGP-III	PRACTICAL	50	2
	IV	HGT-IV	RECOMBINANT DNA TECHNOLOGY	100	3
		HGP-IV	PRACTICAL	50	2
		HGT-V	STATISTICS AND INFORMATICS IN HUMAN GENETICS	100	3
		HGP-V	PRACTICAL	50	2
			A - PAIR		
3 rd	v	HGT A 1	CLINICAL GENETICS & GENETIC COUNCELING	100	3
		HGP A 1	PRACTICAL	50	2
	ELECTIVE	HGT A 2	LABORATORY DIAGNOSIS IN GENETICS	100	3
	PAPERS	HGP A 2	PRACTICAL	50	2
	*ANY ONE		B - PAIR		
	PAIR OF ELECTIVE	HGT-B 1	HUMAN GENOME PROJECT AND GENOMES	100	3
	PAPER A	HGP B 1	PRACTICAL	50	2
	OR B OR C	HGT B 2	MOLECULAR TECHNIQUES IN GENETIC ENGENEERING	100	3
		HGP B 2	PRACTICAL	50	2
			C - PAIR		
		HGT C 1	DEVELOPMENTAL & BEHAVIORAL GENETICS	100	3
		HGP C 1	PRACTICAL	50	2
		HGT C 2	MOLECULAR PATHOLOGY IN HUMAN DISEASES	100	3

HGP C 2 PRACTICAL	50	2
-------------------	----	---

ANDHRA UNIVERSITY HUMAN GENETICS FIRST YEAR - SEMESTER-I HGT-I GENETICS & HUMAN HEREDITY (Revised Syllabus-2020) THEORY

Unit 1: Mendelian Genetics and Extensions

1.1 Physical basis of Heredity. Cell divison – Mitosis & Meiosis

1.2 Mendelian Principles of inheritance – Law of segregation, Law of independent assortment –animal examples; Mendelian inheritance of human traits; Chromosome theory of inheritance.

1.3 Incomplete dominance and codominance; Multiple alleles, Lethal alleles, Pleiotropy, Penetrance and Expressivity – human examples

- 1.4 Two gene interactions Epistatic, nonepistatic interactions; Polygenic inheritance in man and other animal organisms.
- 1.5 Genes and environment -norm of reaction, phenocopies, developmental noise

Unit 2 Sex Linked Inheritance and Sex Determination

- 2.1 Sex Linked Inheritance Sex linked inheritance in Drosophila and human; Sex limited and Sex influenced inheritance
- 2.2 Sex Determination Sex determination in Drosophila Genic balance theory
- 2.3 Sexdetermination in eukaryotes –heterogametic, homogametic, haplodiploidy, role of environmental factors, mosaics
- 2.4 Sex determination in mammals- and role of human Y chromosome

Unit3Extrachromosomal Inheritance

- 3.1 Mitochondrial inheritance (petite mutations); Mitochondrial inheritance in man
- 3.2Maternal inheritance-shell coiling in snail, Ephestia pigmentation
- 3.3Infective heredity- symbionts in Drosophila, Kappa particles in Paramecium.
- 3.4Epigenetics and genome imprinting in humans

Unit 4: Linkage, crossing over and chromosome mapping

- 4.1 Linkage and chromosome mapping in eukaryotes cytological basis of crossingover; recombination frequency,two factor andthree factor crosses; interference and coincidence; Mitotic recombination
- 4.2 Linkage and chromosome mapping in prokaryotes bacteria and bacteriophages transformation, transduction, conjugation; gene mapping in bacteria.

4.3 Genetic definition of gene - Complementation test, intrageniccomplementation,rII locus of phage T4

Unit 5: Variation in Chromosome number and structure

- 5.1 Specialized chromosomes -Lampbrush chromosomes. Polytene chromosomes: Supernumerary chromosomes.
- 5.2 Variation in chromosome structure Deletion, Duplication, Inversion, Translocation, Position effect
- 5.3Variation in chromosome number Euploidy and Aneuploidy in man

HGP-I (PRACTICLS)

1. Mendel's laws through seed ratios& Drosophila mutants.

2. Statistical tests in genetic analysis - application of laws of probability (product rule, sum rule, binomial probability); chi square test and its application in the analysis of genetic data.

3. Study of linkage, recombination, chromosome mapping using test cross data.

- 4. Pedigree analysis for dominant and recessive autosomal and sex linked traits.
- 5. Study of human genetic traits: Sickle cell anaemia, Xeroderma Pigmentosum,

Albinism. Tests for red-green Colour blindness, Widow's peak, Rolling of tongue, Hitchhiker's thumb and Attached ear lobe.

- 6. Incomplete dominance and gene interaction through seed ratios
- 7. Blood Typing: ABO groups & Rh factor.
- 8. Study of aneuploidy: Down's, Klinefelter's and Turner's syndromes.
- 9. Mitosis & Meiosis through temporary squash preparation.

10. Smear technique to demonstrate sex chromatinin buccal epithelialcells.

Suggested Readings

1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India.8th edition.

2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics, John Wiley & Sons Inc., India.5th edition.

3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition.

4. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic

Analysis. W. H. Freeman and Co., U.S.A. 10th edition.

ANDHRA UNIVERSITY HUMAN GENETICS BSc FIRST YEAR - SEMESTER-II HGT-II: HUMAN GENETICS & CYTOGENETICS (Revised Syllabus-2020) THEORY

Unit 1 Basic Human Genetics - Monogenic traits

- 1.1 History of Human Genetics.
- 1.2 Pedigrees family history, symbols, construction of pedigree
- 1.3 Monogenic traits autosomal inheritance, sex-linked inheritance, sex-limited and sex influenced inheritance, mitochondrial inheritance
- 1.4 Complications in pedigree patterns non-penetrance, expressivity,pleiotropy,genetic heterogeneity,genomic imprinting, uniparental disomy, male lethality, X inactivation,consanguinity

Unit 2 Basic Human Genetics – Complex traits

- 2.1 Approaches to analysis of complex traits Nature vs nurture, monozygotic and dizygotic twins
- 2.2 Polygenic inheritance of continuous traits normal growth charts, dysmorphology
- 2.3 Polygenic inheritance of discontinuous traits threshold model, liability and recurrence risk
- 2.4 Genetic susceptibility in multifactorial disorders diabetes

Unit 3 Genetic Mapping of Mendelian and Complex characters

- 3.1Identifying recombinants and non-recombinants in pedigrees
- 3.2 Genetic and physical map distances genetic markers, mapping of genetic traits

3.3 Two point mapping - LODscore analysis, multipoint mapping,

homozygositymapping

3.4 Genetic mapping of complex traits – difficulties in mapping, allele sharing methods, sib pair analysis, allelic association, linkage disequilibrium mapping

Unit 4 Human Chromosomes

4.1 History of human cytogenetics

4.2Cell division cycle - mitotic process, meiotic process

4.3 Human karyotype - banding, nomenclature of banding

4.4 Nomenclature of aberrant karyotypes

Unit 5 Chromosome anomalies

5.1 Common syndromes due to numerical chromosome changes

5.2 Common syndromes due to structural alterations (translocations, duplications,

deletions, microdeletions, fragile sites)

5.3Common chromosome abnormalities in cancer

HGP-II (PRACTICALS)

- 1. Preparation of pedigree charts for blood group, tongue rolling, ear lobes and colorblindness
- 2. Genetics of codominant genes blood groups.
- 3. Barr Body analysis.
- 4. Dermatoglyphics
- 5. Polygenic inheritance finger print ridge count
- 6. Preparation of metaphase chromosome spread using peripheral blood sample.
- 7. Sterilization techniques for leukocyte culture
- 8. Inoculation and Culture of human leucocytes
- 9. Preparation of metaphase plates and their staining and analysis
- 10. Human karyotyping numericals on chromosome number.
- 11. Camera-lucida drawing of chromosomes.
- 12. Micrometric analysis of chromosomes.
- 13. Study of various abnormal karyotypes observed in humans.
- 14. G- banding of metaphase plates and their analysis
- 15. Sister Chromatid exchange analysis from peripheral blood

SUGGESTED READINGS:

- 1. Human Genetics: Concept and Application by Ricki Lewis 10th Edition
- 2. Vogel and Motulsky's Human Genetics: Problems and Approaches

3. The Principles of Clinical Cytogenetics by Steven L. Gersen, Martha B. Keagle 3rd edition.

4. Human Cytogenetics: Constitutional Analysis: a Practical Approach by Denise E. Rooney.

ANDHRA UNIVERSITY HUMAN GENETICS BSc SECOND YEAR - SEMESTER-III HGT-III: HUMAN MOLECULAR GENETICS (Revised Syllabus-2020) THEORY

Unit 1 DNA, RNA and Protein Structure

- 1.1 Building blocks and chemical bonds in DNA, structure of DNA, A-B-Z and triplex DNA,
- 1.2 Building blocks and chemical bonds in RNA Structure of RNA
- 1.3 Building blocks and chemical bonds in peptides- primary, secondary, tertiary and quaternary structure of proteins

Unit 2 Gene expression

- 2.1 Central dogma of molecular biology
- 2.2 RNA transcription
- 2.3 RNA processing
- 2.4 Translation, post-translation processing

Unit 3 DNA replication, recombination, Mutagenesis and DNA repair

- 3.1 DNA replication semiconservative, semi-discontinuous, DNA replication machinery
- 3.2 DNA recombination
- 3.3 DNA mutagenesis
- 3.4 DNA repair

Unit 4 Human Chromosome Organization

- 4.1 Packaging of DNA multiple hierarchies of DNA folding
- 4.2 Chromosomes as functional organelles -origins of replication, telomeres, centromeres
- 4.3 Heterochromatin and euchromatin

Unit 5 Human Genome organization

- 5.1 Mitochondrial genome replication, genes, genetic code
- 5.2 Nuclear genome protein coding genes, RNA genes
- 5.3 Nuclear genome highly repetitive DNA, heterochromatin and transposon repeats

HGP-III(PRACTICALS)

- 1. Extraction of DNA from human lymphocytes
- 2. Paper chromatography of amino acids
- 3. Electrophoresis: agarose gel electrophoresis, PAGE
- 4. Study of isozymes by PAGE
- 5. Comet assay to measure DNA damage
- 6. Problem based on homologous and site-specific recombination
- 7. Effects of mutagens on wt and repair deficient E.coli strains.
- 8. Preparation of Human chromosome spread and banding

Suggested Readings :

- 1. Human Molecular Genetics by T. Strachan
- 2. Human Molecular Genetics by Gerard Meurant
- 3. Human Molecular Genetics by Christopher G Mathew.
- 4. Human Molecular Genetics by Sudbery

5. Human Genetics: From Molecules to Medicine by Christian Patrick Schaaf, Johannes Zschocke.

ANDHRA UNIVERSITY

HUMAN GENETICS BSc SECOND YEAR - SEMESTER-IV HGT-IV: RECOMBINANT DNA AND STEM CELL TECHNOLOGY (Revised Syllabus-2020) THEORY

Unit 1 Cell Based Cloning

1.1 Restriction endonucleases and other enzymes used in manipulating DNA molecules 1.2 Cloning vectors – plasmid vectors, lambda and cosmid vectors, P1 phage vectors,

YAC, BAC, M13 or phagemid vectors, expression vectors

1.3 Introducing recombinant DNA into recipient cells

1.4 DNA libraries -generation of genomic and cDNA libraries; chromosomal DNA libraries

Unit 2 Cloning Human disease genes

2.1 Cloning human disease genes- functional candidate gene cloning, positional candidate gene cloning

2.2 Detection of mutations in human genes –SSCP analysis, DGGE, chemical mismatch cleavage

2.3 Detection of mutation in human gene – DNA sequencing, heteroduplex analysis, protein truncation

Unit 3 Applications of rDNA technology

3.1 DNA fingerprinting – use of mini-satellites for DNA fingerprinting, single locus probes, STRs

3.2 Genetic testing – prenatal testing, neonatal screening, diagnosis of genetic disease in children after birth, pre-symptomatic testing.

3.3 In vivo, in vitro gene therapy; vehicles for gene therapy; gene therapy for heritable and non- heritable genetic diseases.

Unit 4 Biology of stem cells

- 4.1 Historical perspectives, concept of stem cells
- 4.2 Cellular and molecular features of stem cells
- 4.3 Embryonic stem cells and germ stem cells
- 4.4 Fetal adult stem cells and cancer stem cells

Unit 5 Applications

5.1 Medical need for stem cells and preservation of stem cells

5.2.Genetically engineered stem cells for gene therapy

5.3 Stem cell therapy – neurodegenerative disorders, cardiovascular disorders, metabolic disorders, hematopoietic disorders, organ disorders, autoimmune disorders, reproductive failures

HGP-IV(PRACTICALS)

- 1. Isolation of plasmid DNA from E. coli cells.
- 2. Digestion of plasmid DNA with restriction enzymes.
- 3. Estimation of size of a DNA fragment after electrophoresis using DNA markers
- 4. Construction of restriction digestion maps from data provided
- 5. Recovery of DNA from low-melting temperature agarose gel
- 6. Preparation of competent cells of E.coli
- 7. Transformation of competent E.coli cells with plasmid DNA
- 8. Amplification of a DNA fragment by PCR.
- 7. Complementation of beta-galactosidase for Blue and White selection.
- 8. Southern blotting
- 9. Western blotting.
- 10. Culturing cells aseptic techniques, media
- 11. Subculturing and cell lines
- 12. Cryopreservation

Suggested Readings

1. Gene Cloning and DNA Analysis (2010) 6th ed., Brown, T.A., Wiley-Blackwell publishing(Oxford, UK), ISBN: 978-1-4051-8173-0.

2. Principles of Gene Manipulation and Genomics (2006) 7th ed., Primrose, S.B., and

Twyman, R. M., Blackwell publishing (Oxford, UK) ISBN:13: 978-1-4051-3544-3.

3. Molecular Biotechnology: Principles and Applications of Recombinant DNA (2010) 4th ed., Glick B.R., Pasternak, J.J. and Patten, C.L., ASM Press (Washington DC), ISBN: 978-1-55581-498-4 (HC).

4. Human Molecular Genetics by Sudbery.

ANDHRA UNIVERSITY HUMAN GENETICS BSc THIRD YEAR – SEMETER-V HGT-V: STATISTICS AND INFORMATICS IN HUMAN GENETICS THEORY

Unit 1 Descriptive Statistics

- 1.1 Methods of presentation and interpretation of data frequency distribution, graphical representation of data, histogram, frequency polygon, frequency curve.
- 1.2 Measures of Central tendency mean, median, mode
- 1.3 Measures of Dispersion standard deviation, variance, coefficient of variation.

Unit 2 Elementary Probability

2.1 Mathematical definition of probability of an event, Use of permutations and combinations in calculations of Probability

2.2 Conditional probability, Additive and Multiplication law of Probability, Random

Variables, Mathematical expectation and variances

2.3 Probability Distributions: Binomial, Poisson and normal distributions.

2.4 Bayes theorem

Unit 3 Correlation analysis, test of significance and ANOVA

3.1 Correlation and regressionanalysis— Relationship between variables

3.2 Test of significance – statistical and scientific hypothesis, null and alternative hypothesis, procedure of hypothesis testing,

3.3 Test of significance – student's t test, chi-square test, F test

3.4 ANOVA - general idea of one way and two way analysis

Unit 4 Computers, operating systems and Internet

4.1 Principles of computer operations –basic computer architecture, hardware architecture

4.2 Principles of computer operations – software architecture, operating systems, Programming languages –traditional and scripting languages, Java, markup languages, application programs

4.3 Communication and Networks – network architecture, standards for exchange of information, internet services - email, WWW search engines

Unit 5 Bioinformatics

- 5.1 History of Bioinformatics
- 5.2 Databases and search tools NCBI, EBI, GenomeNet; Databasemining tools BLAST

5.3 Database archives – nucleic acid sequence databases, genome databases and genome browsers, protein sequence databases, databases of protein families, databases of structures, expression and proteomic databases, bibliographic databases
5.4 Gateways to archives –ENTREZ, PIR, ExPASy

HGP-V(PRACTICALS)

- 1. Frequency distribution
- 2. Various types of graphs
- 3. Mean, Median, Mode
- 4. Standard deviation, variance and coefficient of variation
- 5. Testing of hypotheses regarding population mean
- 6. Testing of hypotheses about the difference between population means
- 7. Chi-square test
- 8. Testing of Correlation Coefficient
- 9. Fitting of simple linear regression
- 10. One-way ANOVA&Two-way ANOVA
- 11. Internet basics

12. Sequence retrieval (protein and gene) from NCBI, Structure download (protein and DNA) from PDB

13. Molecular file formats - FASTA, GenBank, Genpept, GCG, CLUSTAL, Swiss-Prot,FIR

Suggested Readings

1. Fowler, J., Cohen, L. and Jarvis, P. (1998). Practical Statistics for Field Biology. John Wiley and Sons, 2nd ed. .

2. Bland, M. (2006). An Introduction to Medical Statistics. Oxford University Press, 3rd ed.

- 3. Finney, D.J. (1980). Statistics for Biologists. Chapman and Hall Ltd.
- 4. Wayne, W, Daniel (1999). Biostatistics: A Foundation for Analysis in Health Sciences. John Wiley and Sons, 7th ed.

ANDHRA UNIVERSITY HUMAN GENETICS BSc THIRD YEAR – SEMESTER-V THERE WILL BE THREE PAIRS OF EACH DOMAIN OF CORE COURSE. STUDENT HAS TO CHOOSE ONE PAIR FROM EACH DOMAIN. ELECTIVE THEORY

<u>A - PAIR</u>

HGT A1: CLINICAL GENETICS & GENETIC COUNCELING

UNIT-1 GENETIC DISORDERS I

1.1Monogenic diseases – Cystic fibrosis, Tay-Sachs syndrome, Marfan syndrome
 1.2Inborn errors of metabolism – Phenylketonuria, Maple syrup urine
 syndrome,galactosemia
 1.2 Conome imprinting syndromes. Proder Willi and Angelmen syndrome

1.3 Genome imprinting syndromes -Prader Willi and Angelman syndrome

UNIT-2 GENETIC DISORDERS II

2.1 Genomic syndromes - Neurofibromatosis I

2.2Neurogenetic disorders – Charcot Marie Tooth syndrome, spinal muscular atrophy, alzhemiers diseases, syndromes due to triplet nucleotide expansion

2.3 Muscle genetic disorders – dystrophies, myotonias, myopathies

UNIT-3 GENETIC DISORDERS III

3.1 Genetic Disorders of Haemopoitic systems- sickle cell anaemia, thalassemias, hemophilia

3.2 Genetic disorders of eye - colorblindness, retinitis pigmentosa, glaucoma

3.3. Complex polygenic syndromes - artherosclerosis, diabetes mellitus

3.4 Mitochondrial syndromes

UNIT-4 GENETIC COUNCELLING

4.1 Role of genetic counseling

4.2 Causes and factors for seeking counselling

4.3 Dysmorphology

4.4 Prenatal and preimplantation diagnosis

UNIT-5 PRACTICAL GENETIC COUNCELING

- 5.1 Process of genetic counselling Constructing a family tree, diagnostic information,
- risks and odds, estimation of risks
- 5.2 Genetic counselling in Mendelian disorders
- 5.3 Genetic counselling in Non-Mendelian disorders
- 5.4 Ethical and legal issues in genetic counselling

HGP A1: CLINICAL GENETICS & GENETIC COUNCELING

- 1. Metaphase chromosome preparations from bone marrow of mouse, rat, human
- 2. Chromosome preparation from lymphocyte culture
- 3. G-banding, C-banding, R-banding
- 4. Karyotyping
- 5. Meiosis in mouse testis
- 6. Sex chromatin (buccal mucosa, hair bud)
- 7. Micronuclei assay
- 8. Chromosome preparation from chorionic villi, stem cells, cell line
- 9. Sister Chromatid Exchange (SCE)
- 10. Molecular markers for tumor detection
- 11. Genetic counseling (pedigree analysis in disease conditions, risk calculation)
- 12. Y-chromosome microdeletion
- 13. Biochemical tests for sugar, albumin, Creatine phosphokinase-CPK, glucose 6 phosphate dehydrogenase-G6PD

SUGGESTED READINGS

- 1. Chen, Harold Atlas of Genetic Diagnosis and CounselingSpringer 2012.
- 2. Thompson and Thompson & Thompson Genetics in Medicine, Robert L. Nussbaum, Roderick R. McInnes, Huntington F. Willard (eds)

ANDHRA UNIVERSITY HUMAN GENETICS BSc THIRD YEAR – SEMESTER-V HGT A 2 : LABORATORY DIAGNOSIS IN GENETICS

UNIT-1 BASICS OF CELL CULTURE & INSTRUMENTATION

1.1 Techniques of cell cultures (short term lymphocyte, primary and secondary cell cultures, maintenance of cell lines)1.2Spectrophotometer, centrifugation1.3 ELISA, radioactivity detection1.4 Mass spectrometry

1.5High performance liquid chromatography

UNIT-2 TECHNIQUES IN CHROMOSOME ANALYSIS

2.1 Techniques of chromosome analysis - (a) Chromosome preparation from cultured lymphocytes, cell lines and solid tumors (b) Karyotyping, C-,G-banding and fluorescence banding, nomenclatures of bandings (c) *In-situ* hybridization techniques (d) Meiotic chromosomes in mouse testis

2.2Chromosomal anomalies and disorders - Numerical (polyploidy, aneuploidy, autosomal, sex- chromosomal) - Structural (deletion, duplication, translocation, inversion, isochromosome, ring chromosome) - Chromosomal abnormalities in cancer
2.3Microscopy -Metaphase chromosome preparations from bone marrow of mouse, rat, human,Sex chromatin (buccal mucosa, hair bud),Comet assay, Micronuclei assay, Chromosome preparation from chorionic villi, Sister Chromatid Exchange (SCE)

UNIT-3 GENETIC DISORDERS & MOLECULAR TECHNIQUES FOR DISEASE IDENTIFICATION

3.1 Genetic Disorders - Classification of genetic disorders, Single gene Disorders (Cystic Fibrosis, Marfan's syndrome), Multifactorial disorders (Diabetes, Atherosclerosis, Schizophrenia)

3.2 Molecular Techniques PCR-RFLP, Multiplex-PCR, SSCP, MALDI-TOF

3.3. Disease identification and Genetic tests for following disorders: (a) Thalassemia, Fanconi , Sickle Cell anaemia, Fragile-X syndrome, Alzheimer's disease (b) Duchenne Muscular Dystrophy/Becker's Muscular Dystrophy, Huntington's disease (c) Allelic susceptibility test for multifactorial disorders (Neural Tube Defect, Cleft Lip and Palate, Cardio Vascular Disorder, Male infertility)

UNIT-4 BIOCHEMICAL GENETIC DIAGNOSIS

4.1 Biochemical tests: sugar, albumin, urea, protein, globulin, vitamin;
4.2 Biochemistry and diagnostic tests of following diseases -Duchenne Muscular Dystrophy (DMD) (Creatine phosphokinase-CPK), Phenylketonuria-PKU (phenylketone), G6PD deficiency syndrome (G6PD), Endocrine disorders related to thyroid and reproduction (TSH, T3, T4, Estradiol, Testosterone, LH, FSH)

UNIT-5 GENETIC COUNCELLING AND PRENATAL DIAGNOSIS

5.1 Causes and factors for seeking counselling

5.2Dysmorphology

5.3 Ethical and legal issues in genetic counselling

5.4 Prenatal and preimplantation diagnosis

HGP A 2 : LABORATORY DIAGNOSIS IN GENETICS

1. Metaphase chromosome preparations from bone marrow of mouse, rat, human

2. Chromosome preparation from lymphocyte culture

3.G-banding, C-banding, R-banding

4.Karyotyping

5. Fluorescence *in-situ* Hybridization (FISH)

6.Meiosis in mouse testis

7.Sex chromatin (buccal mucosa, hair bud)

8.Comet assay

9.Micronuclei assay

10. Chromosome preparation from chorionic villi, stem cells, cell line

11.Sister Chromatid Exchange (SCE)

12. Molecular markers for tumor detection

13.Bcr-abl (RT-PCR)

14.Genetic counseling (pedigree analysis in disease conditions, risk calculation)

15.Prenatal diagnosis of Thalassemia

16.Y-chromosome micro deletion

17.Biochemical tests for sugar, albumin, Creatine phosphokinase-CPK, glucose 6 phosphate dehydrogenase-G6PD

Suggested Reading

1. Primrose, SB and Twyan RM. *Principles of gene manipulation and genomics*. 7th edition.Blackwell Science, 2006.

2. Watson, Myers and Caudy. *Recombinant DNA: Genes and Genomes-A short course*. 3rd edition. 2006. Freeman W.H. and Company.

3. Fundamentals of Molecular Diagnositics by David E. Bruns, Edward R. Ashwood, Carl A Burti4. Human Genetics: From Molecules to Medicine by Christian Patrick Schaaf, JohannesZschocke, Lorraine Potocki

ANDHRA UNIVERSITY HUMAN GENETICS BSc THIRD YEAR – SEMESTER-V <u>B - PAIR</u> HGT- B 1 : HUMAN GENOME PROJECT AND GENOMES

Unit 1 Genome Organization and Study

1.1 Genome – general features, features of eukaryotic nuclear genomes

1.2 Genomes, transcriptomes and proteomes

1.3 Genome diversity – significance of genomes – bacteria, yeast, Caenorhabditis, Homo sapiens, Arabidopsis.

Unit 2 Mapping Genomes

2.1 Genetic mapping – pedigree analysis, DNA markers – RFLPs, SSLPs, SNPs
2.2 Physical mapping – restriction mapping, FISH, radiation hybrid mapping, STS mapping

2.3 Sequencing genome- assembly of contiguous DNA sequence, shotgun method, clonecontig method, whole-genome shotgun sequencing

Unit 3 Genome Projects

3.1 Human genome project, HapMap Project, 1000 genome project, ENCODE project

3.2 Other genome projects.

3.3 Applications and proposed benefits of HGP –ELSI.

Unit 4 Understanding Genome sequence

- 4.1 Locating the genes in a genome sequence
- 4.2 Determining the functions of individual genes
- 4.3. Transcriptome microarrays
- 4.4 Proteome protein profiling

Unit 5 Molecularphylogenetics

5.1 Phenetics and cladistics

5.2 Reconstruction of DNA based phylogenetic tree

5.3 Applications of molecular phylogenetics – evolutionary relationship between humans and primates; origin of AIDS; human pre history.

HGP- B1: HUMAN GENOME PROJECT AND GENOMES

- 1. Isolation and purification of genomic DNA.
- 2. Detection of SNPs using SNP specific primers and PCR.
- 3. Study of VNTR's in human genome as the polymorphic loci.
- 4. Design primers for PCR based detection of the gene and mapping primers on the genome
- 5. Introduction to NCBI websites
- 6. Introduction to database:protein data bank, nucleic acid database, Genbank .
- 7. Web based analysis to retrieve a nucleotide sequence from NCBI,
- 8. Sequence alignment using BLASTn, BLASTp, CLUSTALW.
- 9. Gene finding tools GenScan, GLIMMER
- 10. Introduction to proteomics Protparam, GOR, unPredict, SWISSMODEL.
- 11. Visualization software Rasmol
- 12. Generating phylogenetic tree using PHYLIP

Suggested Readings

1. Human Genome Project by James Toriello .

2. Understanding the Human Genome Project by Michael A Palladino.

3. Human Genes and Genomes: Science, Health, Society by Leon E Rosenberge, Diane Drobnis Rosenberg.

4. From Genes to Genomes: Concepts and Applications of DNA Jeremy W Dale,

Malcolm von Schantz, Nick Plant .

5.Genomes 3 by Terence A Brown.

6. Principles of Gene Manipulation and Genomics by Sandy B Primrose and Richard Twyman.

ANDHRA UNIVERSITY HUMAN GENETICS BSc THIRD YEAR – SEMESTER-V

HGT-B 2 : MOLECULAR TECHNIQUES IN GENETIC ENGENEERING

UNIT-1 NUCLEIC ACID ISOLATION AND AGAROSE GEL ELECTROPHORESIS

(9 hours)

Conventional and kit method for isolation of nucleic acids-Plasmid DNA-Genomic DNA from Bacterial cells,Plant cells,animal cells-RNA isolation and m-RNA purification –Agarose purification-Agarose gel electrophoresis-Staining techniques –Pulse feild gel electrophoresis

UNIT-2 PCR TECHNIQUES

Principle of Polymerase Chain Reaction (PCR)-Components of PCR reaction and optimization of PCR –Gene specific primer- Inverse PCR, Hot-start PCR ,Loop mediated PCR – Reverse transcription PCR and Real time PCR.Chemistry of primer synthesis

UNIT-3 HYBRIDIZATION METHODS

Probes – Labelling of probes-Radio active and non-radio active probes-Detection techniques, Southern hybridization, Northern hybridization, Western blotting

UNIT-4 DNA SEQUENCING AND GENE SYNTHESIS

Sangers's method of DNA sequencing – Manual and automated methods. Pyroseuencing-massive parallel 454-sequencing,illumina sequencing,SOLID sequencing,single molecule sequencing

UNIT-5 PROTEIN TECHNIQUES

Electrophoresis of protein –native and denaturing conditions, capillary and gel electrophoresis, 3D gel electrophoresis, ELISA, yeast hybrid system-one hybrid system, phage display

(9 hours)

(9 hours)

(9 hours)

(9 hours)

HGP-B 2: MOLECULAR TECHNIQUES IN GENETIC ENGENEERING

- 1. Primer designing
- 2. Insertion deletion polymorphism
- 3. DNA Finger printing RFLPs and VNTRs
- 4. Amplification and purification of DNA fragments
- 5. ARMS-PCR
- 6. Multiplex PCR
- 7. Nested PCR
- 8. DNA sequencing methods
- 9. SDS-Gel electrophoresis
- 10. Southern blotting
- 11.Northern blotting
- 12.Western blotting

REFERENCES

1.Fredrick M.Ausubel.Roger Brent,Robert E Kingstone,David D. Moore,Seidman J. G,John A.Smith and Kevin Struhl, "Current Protocols in Molecular Biology",John Wiley & Son,Inc.2003.

2. Daniel C.Liebler "Introduction to Proteomics", Human Press, 2002.

ANDHRA UNIVERSITY HUMAN GENETICS BSc THIRD YEAR – SEMESTER-V <u>C - PAIR</u> HGT C 1: DEVELOPMENTAL AND BEHAVIORAL GENETICS

UNIT-1: Germ Cells and Fertilization

Germ Cells

Spermatogensis

Oogenesis

Fertilization and Gastrulation

UNIT-2: Molecular Aspects of Development

Maternal effect gene

Gap gene

Pair rule gene

Segment polarity genes

Homeotic genes

UNIT-3: Genetics of Embryonic Development in Drosphila

Overview of Drosphila development

Zygotic genes and segment formation

UNIT- 4: Flower Development in Arabidopsis

Development, Role of Homeotic Selector Gene

UNIT-5:GENETIC CONTROL OF BEHAVIOUR

Introduction, Behaviour in Invertebrates, Honeybee, Drosophila – Genetic basis of alcoholism, genetic basis for sexual orientation. Courtship behaviour in various animals.

HGP C 1: DEVELOPMENTAL AND BEHAVIORAL GENETICS

1.Study of development in chick embryo

2.Dissection of imaginal disc in Drosophila larvae

3.life cycle of drosophila, husbandary and handling.

4. Role of SHH signaling in chick development

5. Observation of living and plastic embedded chick embryos

6. The maternal effect gene in drosophila

REFERENCES

The cell – Bruce Alberts

Emery's Elements of Medical Genetics- Robert. F. Mueller, Ian. D. Young.

Principles of Development - Wolpert

Principles of Genetics – Snustad, Simmons, Jenkins.

ANDHRA UNIVERSITY HUMAN GENETICS BSc THIRD YEAR – SEMESTER-V

HGT C 2 : MOLECULAR PATHOLOGY IN HUMAN DISEASES

Unit 1 Human diseases I

- 1.1 Etiology, pathology and symptoms of genetically inherited diseases PKU, alkaptonuria, galactosemia, Von Gierke disease, LeschNyhan syndrome, Gout, sickle cell anaemia, beta thalassemia, diabetes
- 1.2 Mode of infection, symptoms and epidemiology of disease causes by viruses (HIV, Hepatitis B, Rabies, HSV-1)
- 1.3 Mode of infection, symptoms and epidemiology of disease caused by bacteria typhoid, syphilis, TB

Unit 2 Human diseases II

- 2.1 Mode of infection, symptoms and epidemiology of disease caused by fungi aspergillosis, histoplasmosis.
- 2.2 Mode of infection, symptoms and epidemiology caused by protozoa –malaria, amoebiasis.
- 2.3 Cancer genetics tumor suppressor genes, oncogenes, Molecular basis of oncogenesis

Unit 3 Basic Instrumentation principles and techniques

- 3.1 Principles of electrophoresis and immunoblotting
- 3.2 Principles of DNA sequencing and methods of genotyping and mutation analysis
- 3.3 Principles and applications of PCR
- 3.4 In situ hybridization techniques ISH, FISH

Unit 4 Genetic testing for hereditary disorders

- 4.1 Genetic testing for thalassemia
- 4.2 Genetic testing for familial colorectal cancer
- 4.3 Genetic testing for familial breast and ovarian cancer

4.4 EGFR mutation in lung cancer, HER2 amplification in breast cancer, FISH test for early bladder cancer detection,KRAS mutation detection for colorectal cancer

Unit 5 Molecular diagnosis of infectious diseases

- 5.1 Principles of HPV testing and methods of genotyping
- 5.2 Hepatitis B virus infection testing for viral load and HBV DNA mutants detection

5.3 Molecular techniques -NestedPCR, Real Time PCR for different clinical applications

HGP VIII-C 2 : Molecular Pathology in Human Diseases

- 1. Preventing contamination.
- 2. Extract and assess the purity of DNA.
- 3. Agarose gel electrophoresis
- 4. Set up PCR.
- 5. Evaluate Southern blot data
- 6. Analyze PCR product using agarose gel electrophoresis and interpret results
- 7. Demonstration of karyotyping
- 8. Isolate cellular RNA, purify mRNA
- 9. Set up RT-PCR using commercial kit
- 10. Analyze RT-PCR results by agarose gel.

SUGGESTED READING

- Basic Concepts of Molecular Pathology Series: Molecular Pathology Library, Vol. 2Cagle, Philip T. Allen, Timothy C. (Eds.)Springer 2009
- 2. Molecular Pathology: The Molecular Basis of Human Disease; William B. Coleman, Gregory J. Tsongalis (Eds.);Academic Press;
- 3. Genomics and Personalized Medicine Huntington F. Willard, Geoffry S. Ginsburg; Elsevier 2009
- 4. Medical Genetics, 4th Edition;Lynn B. Jorde, John C. Carey, and Michael J. Bamshad,Mosby
- DNA from A to Z & Back Again; Carol A. Holland and Daniel H. Farkas; AACC Press 2008
- Molecular Genetic Pathology, 1st ed.; Liang Cheng and David Zhang; Humana Press 2008